HiLAPW – Practice & Tips

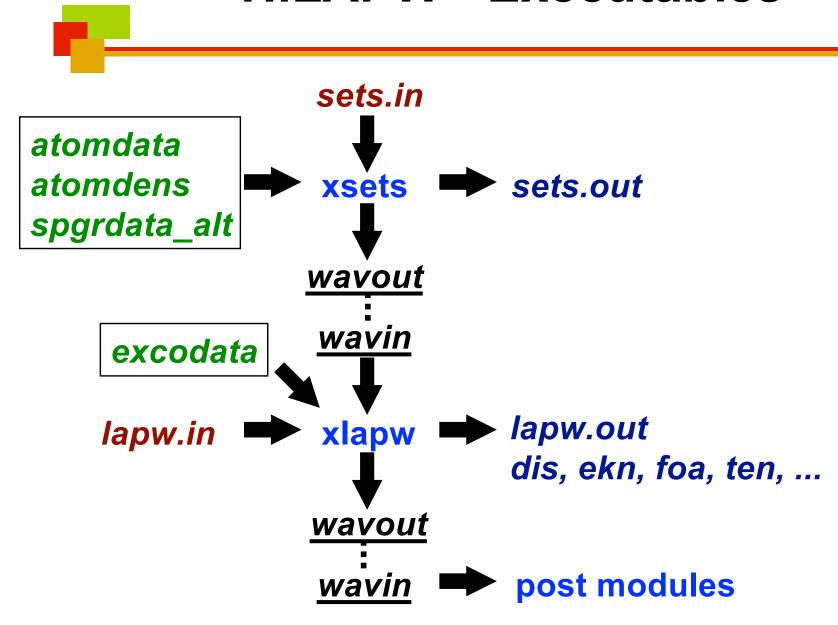
Some Practical Points @ CMD Cluster Systems

- HiLAPW
 - Specifications
 - Executables
- GETTING STARTED 1, 2, & 3
- JOB SUBMISSION
- OUTPUT GRAPH
- LAcopy

HiLAPW – Specifications

- 100% Original Code
 - LAPW basis functions
 - LSDA, GGA, Hubbard-U
 - Scalar relativity, Spin-orbit coupling
 - All-electron SCF full-potential scheme
 - BZ integration with tetrahedron method
 - Group theory
 - Crystal structure & element data base
 - Total E, forces, DOS, ...
 - XAS, Berry phase, ...

HiLAPW – Specifications


- 100% Original Code
 - Modular executables
 - Fortran90
 - dynamical memory allocation
 - BLAS and LAPACK libraries
 - PSP: postscript plot routines
 - MPI parallelization

HiLAPW - Executables

executables	contents
xsets	initialization
xlapw	SCF calculation
xdoss	DOS
xnewa	modification k-point data
xwbox	electron density on 3D mesh
xpbox	potential on 3D mesh
xspin	addition of spin polarization
xsymm	irreducible representation extract
xrept	rearrangement of eigenvalues

HiLAPW - Executables

⁵

GETTING STARTED 1

- Login Linux server with "ssh –Y rl"
- Copy the HiLAPW package onto your home directory

cd
tar zxvf ~teac03/hilapw.tar.gz

My home directory:

Some other files can be obtained here as I shall show it later.

GETTING STARTED 2

- Set PATH and HiLAPW link
- # cd hilapw
- #./configure.sh

- Activate the setting (only when you update)
- # source ~/.bashrc

← if bash is used

source ~/.cshrc

← if csh or tcsh is used

echo \$PATH

← to check

GETTING STARTED 3

Create working directories and get example data

```
# cd
# mkdir hilapw1
# cd hilapw1
# mkdir Cu
# cd Cu
# tar xvf ~/hilapw/data/Cu.tar
```

Please keep the directory ~/hilapw you installed package untouched.

RUNS

- fcc Cu
 - total and partial density of states
 - band structure
- Ferromagnetic bcc Fe
 - total and partial density of states
 - band structure
- Diamond-type Si
 - total energy
- Ferroelectrics
 - electric polarization
 - structure optimization

fully prepared

JOB SUBMISSION

Batch Job Commands

```
# qsub JOB.sh
# qstat
# qdel "job-ID"
```

submit a batch job show the job status with ID delete the job from queue

– Script-file: JOB.sh

```
#$ -S /bin/bash
#$ -cwd
#$ -pe smp 6
#$ -N HiLAPW
./JOB-SCF
```

OUTPUT GRAPH

Get a post-script graphic file

total DOS plot

```
# PSP < psp_tdos > tdos.ps
```

PS file processes

to view

```
# gs tdos.ps
# evince tdos.ps
to convert to pdf format
# ps2pdf tdos.ps
to convert to eps format
# ps2epsi tdos.ps
```

LAcopy

- The executable "xlapw" is often run several times, outputting the same files such as dis, ekn, foa, lapw.out, ten, wavout, and etc.
- To (re)name the files generated at each xlapw run, a command "LAcopy" can be used.

```
# LAcopy A1
ekn → eknA1
foa → foaA1
lapw.out → outA1
ten → tenA1
wavout → wavA1 and wavin
Don't use it before the job ends!
```

Total Energy Calculation of Si

```
٩.
```

```
1st STEP
# cd hilapw1
# mkdir Si
# cd Si
# tar xvf ~/hilapw/data/Si.tar
# qsub JOB.sh
```

```
# ./GET-TEN > TEN
# xefitm < TEN > fit_TEN
# tail -103 fit_TEN > TEN2
# PSP < psp_TEN > TEN.ps
```

Total Energy Calculation of Si

```
1st STEP
# cd hilapw1 # vi excodata
# mkdir Si LDA MJW → GGA PBE
# cd Si # vi JOB.sh
# tar xvf ~/hilapw/data/Si.tar ./JOB-TEN → ./JOB-TEN_G
# qsub JOB.sh
```

```
# ./GET-TEN > TEN
# xefitm < TEN > fit_TEN
# tail -103 fit_TEN > TEN2
# PSP < psp_TEN > TEN.ps
```

```
# ./GET-TEN_G > TEN_G
# xefitm < TEN_G > fit_TEN_G
# tail -103 fit_TEN_G > TEN2_G
# PSP < psp_TEN_G > TEN_G.ps
# gs TEN_G.ps
```