Applications of data science and
machine learning to organic materials

Daniel Packwood

'|'.|.I.|.'| KYOTO UNIVERSITY

I | WPI Research Center




Self-introduction

Senior lecturer and PI at iCeMS,
Kyoto University (2016 - 2023)

Assistant Professor,
Mathematical Sciences
Unit, AIMR, Tohoku
University (2012 — 2016)

JSPS Postdoc, Quantum Chemistry Lab, Dept.
of Chemistry, Graduate School of Science,
Kyoto University (2010-2012)

/<_ ________ University of Canterbury (PhD 2010)
Major: Chemistry, Minor: Statistics




Graduate school research (late 2000s) ‘( '
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scattering from liquid surfaces W
using non-equilibrium statistical mechanics
and stochastic differential equations. % Liquid surface
0 %
x (&)

Two names frequently appeared during my study:

Kiyoshi Ito Ryogo Kubo

* Kyoto Univ.e.rsity * Tokyo University physicist
mathematician
* Non-equilibrium statistical

mechanics pioneer

e Stochastic differential
equations pioneer

Realization: my field was pioneered in Japan!



Why did | come to Japan?
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https://www.jsps.go.jp/hope/gaiyou2.html

e Gathering of around 50 students from the Asia-Pacific region. Activities with Japanese
graduate students and lectures from Japanese Nobel laureates.

* High level of research from the students impressed me, left me with a strong impression.
- Go to Japan for postdoctoral research!



Career in Japan
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My previously research...

| studied stochastic processes (random walks) in physics and chemistry.

The most famous type of random walk in these fields is Brownian motion:

Pollen particles on water
Random motion due to collisions
with water molecules 5

| Model motion as h

a random walk

R y
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12 . . . : : : :
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Postdoc research (2010 - 2012)
Continuous-time random walk
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Consider a person hopping in one dimension.
Let x denote their position.

In the continuous-time random walk,

* the waiting times between jumps are
random (average waiting time = 7), and
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Ay Position (x)

* thejump size is random



Typical results
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1. Derivation of conditions for convergence to Brownian motion as wait i (Iy
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s Prediction from theory
;. / Phys. Rev. E. 86, 2012, 11130 )
- 1 sinr/T | | u |
—t/7 wwot ;
F (t) e e / 6 0 exp M d/'a [ Time (11c)
T 0 r Fun, but a very narrow topic...



Career in Japan
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Chance to shift to computational research:

Emergen ] ]
gence of data science in computational materials science

Around 2012 - 20

hOW maChine I 1.4.’ Several papers appeared Showing https://www.inspiritai.com/blogs/ai-blog/what-is-ucla-known-f
| . earning could be applied in computational Tl

materials science.
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Research in the Packwood group

organic materials x simulation x data science

Visualization of organic semiconductor database

Computational design of bioactive compound for (Adv. Theory Simul. 2023)
iPS cell control (J. Chem. Inf. Model. 2025)
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gap (V) _ | i Pentacene
: 2
Small molecule aggregation 3
(2021 — now) 3
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Bioactive molecule discovery o
(2021 — now) %
<
Disease detection potential in a MOF-
semiconductor sensor (Adv. Theory Simul. 2025)
L : <
Coordination polymers / metal-organic frameworks (2018 — now) )
& g.
Simulation of metal- . . . . Q
complex self-assembly % i (Gijngfotc'::)rya”a'ys's of peptide dimer dynamics Organic semiconductor (2021 — now) my
(Adv. Physics Res. 2022) g
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On-surface molecular self-assembly (2015 — 2022) a
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[ Simulation of on-surface molecular self-assembly }

Machine learning for organic photovoltaic materials



On-Surface Molecular Self-Assembly

Molecules
adsorbed to a

surface 3

Many experimental reports...
(Scanning tunneling microscopy images)

Time (< 10%s)

Molecular assembly
(forms spontaneously)

Y Y — Molecular electronics
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N /\/(:)\8\‘) molecular_electronics.ph
=\, _ -pnp
N )
. —NJ
Q . Organic electronics
[ Chem. Soc. Rev. 46, 2017, 40
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How | came to this topic?

ACS Nano. 8, 2014, 9181

Deposition on

Cu(111) : g o
Dr. Patrick Han Prof. Taro Hitosugi
(now at Tokyo Univ)
Dibromo-bianthracene , Y, Random distribution
molecule oo 7. (
Self-assembly of molecular chains y
e (1
About 10 years ago, colleagues at Tohoku University were studying molecular /

self-assembly using scanning tunneling microscopy (STM). '

Molecular chain

They wanted to know whether the chains
could be predicted computationally.

Collaborating together, we created a
computational method to predict chain
formation.

Today, | will discuss an updated
version of this method applied

Nat. Commun. 8, 2017, 14463 to a different type of system...




Girovsky et al. Nat. Commun. 8, 2017, 15388

Self-assembly of FeFPc and MnPc on Au(111)

MnPc

Metal ion spins
antiferromagnetically coupled

STM image
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Metal ion electron

The antiferromagnetic coupling is due to the
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Can we reproduce this result



Q1. How to build a simplified model for the system?

S Ak
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Metal complexes on gold
surface (Au(111))
MnHPc




Model assumptions

) [— Surface atom
Perfectly crystalline surface

Two types of molecules on the surface; GA o
n, of the first type, n, of the second type. \

Surface unit cell

Finite number of adsorption sites (places

where the molecules can sit) Molecule

Finite number of molecule orientations.

Rigid molecules. All molecules of the
same type have the same conformation.

E E u; = molecule j-surface interaction ener
E /U/Z _I_ UZ] ! gy

v;; = molecule i-molecule j interaction energy
]

Two-body energy function

How do we assign the energy parameters (u;, v;)?



Molecule-surface interaction energies — assign using DFT*

i. Obtain the optimal molecule-surface ii. Discretize surface B G D BB G WD B0 4 B B
adsorptlon hEIght (around 40’000 po|nts) 4e  1e 26 36 46 16 26 36 46 1e 2e
(all atoms frozen) =9 " s = 50 B B T 55 BE B =5 B
MnHPC B T 8 5 6 v 8e 5 6 g 8 5
2
GOId Slab 'g 2 3 4 1onnnsn Prpnnnn Zmmunnn, grumnnnp 2 3 4
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g N 5 6 T 8 50‘..‘ 6 Y 8 5 6 T
iii. Compute interaction energy at each te e se e e e e e e e 4o
(symmetry unique) adsorption site o 7o se se ee 7o se s se T se 5o
Interaction | ' ' ' '
2 4 6 8
energy (eV)

(' "' ™~ c’ ‘.G‘ca T EEEXK, Horizontal coordinate (A)
" 80
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TRACH Y
GO
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-5.00 -

-> Surface-molecule interaction
parameters assigned!

510 . E — U, E ’Uz'j

i i

Step iii is performed for various molecule
orientations (0°, 40°, 80°, ..., 320°)

* DFT as implemented in FHI-aims, with the PBE exchange-correlation functional, TS vdW corrections, and “light” basis set defaults.



Problem!

For a model with 40,000 adsorption sites, around 101! unique molecule-
molecule interactions are possible.

We cannot calculate the energy of each one individually using DFT.

Our solution Sample data
(calculated from DFT)

Take a small sample of around 5000 S Case b

intermolecular interactions, calculate their
energies with DFT. g- W —>

v;j=-0.04 eV v;=-0.08 eV

v (energy units)

Use the sample data to build a machine-
learning (ML) model.

Use the model to assign the energies of ' + others
the remaining cases.

Casec

v;=-0.15 eV

x (structural descriptor)
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Coulomb-type descriptors
X1 = l/dlla Xy = 1/d12,

Support vector machine
Transform data so that it can be
separated by a linear plane

(X1, X2, ...) = V1, Vo, ---)

v;<-0.05 eV -0.05eV<y;<0

v

Kernel ridge regression
Transform data so that it lies
on a linear plane

(yl,yz, ) == (Zl, Zy, )
vjj prediction Vij =

ML predicted energy (eV)

P
System under consideration:

Phthalocyanine molecules adsorbed to gold(111)

J

-0.25 -0.20 -0.15 -0.10 -0.05 0.00

-0.30

N\ /N ) N Mr( N
F L < F Y
NZ >
£ F d MnHPc
g b adsorbed
FeFPc MnHPc  to Au(111)
Performance on test data
SVM fail rate: 0.57 % . :
(Nyyain = 3292, Nyoyy = 2195) ‘
. . "' _>We can use the ML model
. to assign the v;; with DFT-

X levels of accuracy:

* Kernel ridge regression model
. (ntrain = 3936/ ntest = 695)

T T T T T T T

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

DFT interaction energy (eV)

DFT details: FHI-aims code, PBE xc functional, TS vdW corrections, ‘light’ basis set defaults.



wlow to build a simplified model for the system?

/

Metal complexes on gold
surface (Au(111))

Q2. How to obtain predictions from the model?

MnHPc

We need to identify molecule
configurations with high
formation probability p:

E
P = CeXp (_kB—T)



Markov chain Monte Carlo (MCMC)

A
Y\ Y
C X

eVA\VA\VA
A A AN

L1
>

‘XAVA\\VA\VA

V4

A

High-probability region

Configuration r

E,
Pr = Cexp (_ )

kT

Configuration space

Configuration s

Ps = CeXp (_

Es
kT

(one point = one configuration of molecules)

In MCMC, we simulate a random walk over the configuration space. It is simulated in such a way that, after a long
length of time, the number of visits to configuration s is proportional to p, (the formation probability).

Problem: MCMC can be very inefficient. The configuration space is huge. The high-probability region (where the

molecules are closely packed) is very small. Long simulation times are usually required to reach it.

)



Our solution: genetic algorithm + Markov chain Monte Carlo

Configuration s

E
=Cexp | ——
Configuration space

(one point = one configuration)

Configuration r

E,
p, = Cexp (— kBT)

The genetic algorithm makes large steps in the configuration space, quickly bringing us to the high-probability region
(coarse search)

Markov chain Monte Carlo (random walk) makes short steps, thoroughly exploring the high-probability region.
(fine search)



Genetic algorithm (general concept)

https://machinelearningmastery.com/2d-
test-functions-for-function-optimization/

800
., X, which minimize the

600 Task: Find the values of x;, x», ..
w0 U1 X2) objective function U(xy, xs, ..., X,,)
200 ..
. Initial setup: N vectors of random numbers (x;)
Vi = (0, X0, o X1) Vo= (00, X005 oy X0y) e VN T (XNT, XA, <+ v5 Xi)
These vectors are called chromosomes. The elements x;; are called genes.
: . Make new lation with
Algorithm: ake new population wit Mutate all
Calculate Create k new N~k high-fitness h b
. romosom
Population of biecti Calculate chromosomes from ¢ ) Omosomes by
objective _ chromosomes by isinal lati q adding small random
chromosomes function fitness random mixing original population an b
the k new ones nuMDbers
Vi Ul fl Vi Vl’
Vi2 =
V2 U, f (X115 X225 +eey X2) Vi Vi)' = (Xt w, ot wa, L 0, T w,)
: As algorithm is
v ) iterated,
N UN -fN VN VN min(Ul, Uz, soog UN)
converges to the

global minimum.




Genetic algorithm implementation

Chromosomes: Vector of molecular clusters

] correspond to far-
Vi=( e : ) separated groups

Closest interatomic
distance > r,
negligible interaction

Clusters

of molecules

Objective function: a free energy function

U(v;) = ]%’(Vz') —

Energy

Chromosome mixing:

As before, but with conditions
(to ensure that number of
molecules ny, n,, is constant)

JS (v;) S(v;) =kpInW (v;)
t t t

Pseudo- Configuration Number of unique ways molecular clusters

temperature entropy can be placed on the surface (approximate
formula: R. Soc. Open. Soc. 3, 2016, 150681)

Chromosome mutations:

Random shift of a molecule between clusters




Special feature of our genetic algorithm: simulated annealing

w p—
o 5 Na and 5 K atoms on
a copper surface
1
£
g
© |
6 ©
£
>
S o
2 E
o— <
=8 o
0%
25
=
-g (]
N
o S
[a
o |
o

J =1 Kelvin/h1/2

I I I
0e+00 2e+04 4e+04

|
6e+04

1
8e+04

Genetic algorithm iterations (h)

We gradually decrease the pseudo-temperature J as the algorithm proceeds. This helps the
algorithm move out of local energy minima, improving performance.

|
1e+05

Minimum-energy configuration
(yellow = Na atom, purple = K atom)
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SR BB RE R R EEETEYETYETY Y
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Note: J is just a parameter to control the algorithm, and not the true surface temperature.



WOW to build a simplified model for the system?

N AN
\HN\ N=
N :M[12+ N
/ = N \NH/
[ N\ \N/
Metal complexes on gold
surface (Au(111))
MnHPc

WOW to obtain predictions from the model?

Results...



Simulation for 4 FeFPc and 4 MnPc molecules on Au(111)

Initial: random dispersion
of molecules |
4 D)
o KA
- - pee
v 0
Population '.. Output from J
o average - genetic //
- . 4
3 algorithm ,/
o
o
v

>
2
L
S
(]
[
L .. -
Minimum g W S
@ energy Predictions
v ..
look similar to
STM image?

w0

o -

g

o

q p—

b :

I | | | | | | I | | |
0 37238 74476 0 37238000 111714000 186190000 260666000
- - R G N
Genetic algorithm Markov chain Monte

iterations Carlo iterations Typical assemblies observed during Monte Carlo (at 300 K)



Visualization of equilibrium distribution of molecular configurations (300 K)

Energy (ev)

; _
Population i
- average 50
N 5 . .
configurations
. from MCMC
g -

425
]

Minimum

o
5 ener;
g 8y
0
-
I
o
< 4
h i

T T T I T T T T T T T

0 37238 74476 0 37238000 111714000 186190000 260666000

Genetic algorithm Markov chain Monte
iterations Carlo iterations

30

20

10

t-SNE dimension 2

MCMC gives us a sample of configurations that appear at
thermodynamic equilibrium.

We apply t-distributed stochastic neighborhood embedding
(tSNE) to visualize the MCMC sample in 2D. The configurations
(red points) are arranged according to their structures.

The configurations sampled by MCMC are mostly located in
two clusters. Within these clusters, the configurations are
mostly identical.

t-SNE dimension 1

10 20 3C

Interpretation.

At 300 K, are the
predominantly two types of
configurations on the surface.



30

20

10

-30

& 100 K & 300 K
~ =
1 & BN
3 3
£
|8 18 o,
N S, N S3 F
7 A S1 ] @
- ° I
. @
t-SNE dimension 1 t-SNE dimension 1
-30 20 10 0 10 20 30 -30 20 10 0 10 20
To compare with experiment, we consider Calculation Experiment
simulations performed at low temperature (100 K). (mean = st err) (mean = st err)
Two types of configurations are also seen at 100 K, L 14.14£0.07 14.05+0.08
although different from the ones at 300 K.
, o 6, 95.27 +1.86 95.84 +1.26
Configuration s; achieves quantitative agreement
with cryogenic §TM images. Another phase also 6 84.73 + 1.87 84.84 +0.79
reported experimentally (perhaps s,?) .

3C




Predicting magnetic properties S)
The spin directions of the Mn / Fe ions are very difficult to predict from first-principles. We S5 S
therefore use a classical Ising model: .
S6 S3
S, = spin vector for spin i X
H = E ngSz . Sj P P S; Sy
. J;; = Exchange constant
1#£] Sg
For the case of RKKY interactions between spins*: 4 Vetal o electron
4 @ @ ﬁ @ ﬁ Metal ion
2 . ™ - ® ® P r Surface electrons
Jij = Qg(2kpri;) g(x)=|—) (sinz — xcosx)
X
RKKY interaction
O = System-dependent constant kr = Fermi vector for surface
A-1 *
r;; = Distance between spins i and j (about 0.18 A for Au(111)%) ® S;=(0,0,2)
. Si S (O, 0, '1)

Result:

This model correctly predicts an antiferromagnetic ground state for the molecular assembly!

(a direct calculation of the spin orientations using density functional theory would be preferred
for studying the magnetic ordering in more detail)

*Patterson and Bailey. Solid-State Physics. 2018. Springer ** Reinert et al. Phys. Rev. B. 63, 2001, 115415




Final comments for part 1

* We succeeded to create a method that can predict how molecules
assemble on metal surfaces.

* It combines a machine-learned interaction potential with genetic
algorithms and Monte Carlo sampling.

References: Nat. Commun. 8, 2017, 14463;
Adv. Phys. Res. 1, 2022, 2200019 <- this one is better!

We have done some other things with this method:

2D crystal 1D crystal

<

* Discovery of ] * Prediction of
connection between < ] m disordered
single-molecule e molecular
properties and ) 19 ° 5 | assemblies using
molecular assembly § 5 asymmetric
shape. I molecules

F

£
= F =

Q\,/N\ \ N N\\
>\—NN_ L* F \”"-.‘ N= :
s P! NN

u\' NH c |

N\ N A

® Qb :

Nat. Commun. 9, 2018, 2469

Adv. Phys. Res. 1, 2022,
2200019
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Organic solar cells and exciton diffusion (Hodgkiss group)

hv Acceptor Layer Donor Layer

Sun%} \@\\

Transparent
Cathode

%3/ \
)

Organic solar cell

(www.solarreviews.com/blog/organic-solar-cells/) ACCGptOI‘ Molecule: \ Exciton: Donor Molecule:‘

Acceptor layer is an organic semiconductor
(crystal or amorphous solid of organic molecules)

Donor layer is another semiconductor (can be organic or inorganic)

Light absorption by the acceptor layer results in Frenkel excitons
— tightly-bound electron-hole pairs localized to single molecules.

Excitons hop between molecules to the donor-acceptor interface (DAI), where they dissociate into electron and hole
pairs and generate electricity. However, if the exciton moves too slowly, it will die by electron-hole recombination.



https://mediatheque.lindau-
nobel.org/laureates/marcus/cv

Exciton hopping

About 60 years ago, Rudolf Marcus showed that the rate
of exciton hopping between molecules is approximately

Exciton coupling

(T NB (A
U=\ NepT ) B P\ ksT

Temperature

El
Important parameter 1. LUMO 41—%”% -
Reorganization energy (A)

The exciton distorts the shape HOMO
(conformation) of the molecule.

The reorganization energy measures the
energy required to change the shapes of
the molecules as the exciton shifts.

:"_ HOIe

Molecule i Molecule j

Molecule i Molecule j

1/k;; is the (average) time taken
for the exciton to hop from
molecule i to moleculej.

Hop

Molecule i Molecule j



Marcus equation: . .
) ) eorganization
|mp0rta nt 1 Exciton coupling energy
5 42
parameter 2. 1 ™ > U exp A
’Z: . p— — — —_ e————
Exciton coupling ’ AkpT L ksl
Molecule i Molecule j
The exciton coupling v;; is a quantum mechanical parameter. Molecule i Molecule j
Its interpretation is somewhat abstract: ,
* Start with |y;). This is the wavefunction for the two
molecules together, with the exciton on molecule i
(initial state, before the hop).
Exciton on j,
. . o i d state.
* Electron-electron interactions between molecules iin ground State-\ / /1 BroUNg state
perturbs |y;;). The perturbed wavefunction is
represented as H, |y;). L= . »
p ol wi) Uzy <¢]’L|I_{€’w’6]>

* Now consider (y;;|. This is the final wavefunction, with

_ S Electron-electron interaction operator
the exciton on molecule j (final state, after the hop).

Both of these parameters can be calculated from first-

* Finally, (y;lHlyy) tells us the overlap between the principles (time-dependent DFT / TDDFT). However,
perturbed initial wavefunction and the final wavefunction. ) ) . ’
these calculations are very time consuming!



Kinetic Monte Carlo (kMC) simulation of exciton diffusion

Molecule i Molecule j

Once the hopping rates are calculated, the hopping process can be
simulated using the kinetic Monte Carlo (kMC) method.

Roughly, the exciton hops to its neighbor j with probability
proportional to k;. This results in a random walk-type motion
through the crystal*.

Mean-square displacement

| Exciton diffusion 1d (t)2
coefficient can be D= lim ———~2—
0.10 - estimated as: t—oo 0
Calculationsof D | .
compared to | ¢
spectroscopic | <oos " [« IDIC (Chandrabose) kMC simulations yield reasonable predictions of
measurements | © g B =) diffusion coefficients.
(‘r:T"] ?ctearli!:]se) o : ) ﬁ?ggg: ® Could we discover new organic materials with large
02{ s g ITIC-2CI (y) diffusion coefficients by high-throughput kMC
Talt R [} L simulations?
v
0.00 T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12
J. Mater. Chem. C. 24, 2024, 8747 D (cm?s™) * Other details: Phys. Chem. Chem. Phys. 21, 2019, 25023




Kinetic Monte Carlo (kMC) for materials discovery?

Candidate Candidates with high exciton
organic semiconductors diffusion coefficients
Excito '~ e i

Molecule i Molecule j

Looks feasible — kMC can be done quite quickly on a laptop (minutes per candidate).

Reorganization
energy

For each candidate, couplines and reorganization energies 1 2 i\
need to be pre-computed from TDDFT before kMC can start. k.. — m Y _
1] eXp
Ak h 4kgT

Problem: kMC has a big computational overhead!

Exciton coupling

Can we use machine learning to predict these parameters
quickly?



2021 - 2022
First attempt at machine learning for exciton couplings
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First target - exciton diffusion in amorphous pentacene

P2 @l 48 8 ee 4

: A : » »» Exciton o~ e
B gy
' ~ ' . _ Molecule i Molecule j

Exciton coupling

3 0,2
71 2712']' A

k‘ij = — E€XpP | —

AT h 4kpT

Amorphous pentacene is an organic semiconductor which can be used in
organic solar cells.

Simple and relevant molecule, good starting point.

| Organic solar cell

(www.solarreviews.com/blog/organic-solar-cells/)



Machine learning concept

Training data 0
Dimer a
Dimerb

7 p
% 6

g
_ ~ 51

V= 1.2 meV V,-j:6.5 eV K

(from TDDFT calculation)

Dimer c 3

2 a4
+ others 11
0

0 1

V= 5.9 meV

Again, we aim to fit a model which predicts coupling from dimer structure (x).

Dimer a

Dimer c

ML model

Dimerb

New
dimer

2

3

x (descriptor for dimer structure)

With the fitted model, couplings for new dimers can be quickly predicted.




ML model for exciton couplings

Coulomb-type descriptors

e
X1 = 1/d11, Xy = l/dlz,
d
12 Sorting
Dimer (coupling = v;) PCA
Pair of molecules within a
5 A interatomic cut-off Support vector machine

Classify coupling as strong or weak

|vij|
O
#1 vl > 7.5 meV vyl <7.5 meV
O# s 2
O# 2 v v
Kernel ridge Kernel ridge
regression 1 regression 2
Trained on strong Trained on weak
Z
! cases only cases only
v; prediction v prediction

DFT settings: CAM-B3LYP xc functional with 6-3111+G(2d,p) basis set as implemented in Gaussian.

g
System under consideration:

Performance on 4127 dimers

120
ny,>"M = 200 dimers

ntrGPRl = 800

g0 Ny"""> =800

100 -

60 -

R?=0.77

ML predicted coupling (meV)

T T

0 20 40 60 80 100

DFT coupling (meV)

120

Average prediction
time around 7 ms on
an office workstation*

(cf. 7.4 hours for
TDDFT on
supercomputer**)

* Single 3.50 GHz Intel
Xeon E5-1620 core

** 64 cores (128 threads),
2.0-3.35 GHz AMC Epyc
7702 processors.




Kinetic Monte Carlo simulation in amorphous pentacene

Exciton A ""\\ .

Molecule i Molecule j

Ab initio couplings

Diffusion coefficient (x 10~ cm? s™?) 1.630 + 0.011
Diffusion tensor eigenvalues (x 10 em?s7h)

Major 1.815 + 0.014
Middle 1.551 £ 0.016
Minor 1.525 £ 0.012

<
300 — 9 o
= ) couP ings /-///,/,—i' -t >
< —— ML couplings i e T
< 200 4 o L 60 o
c e i 1)
2 1 -— _—— ) X
c 100 - , i 30 3
[ _ e ®
= - s
0 +== . . ; . 0 <
0 200 400 600 800 1000 >,
time (ps) -
DFT couplings 400 A
- - L2 - ke
200 ps 400 ps 600 ps 800 ps 1000 ps
ML couplings 400 A
Model-predicted couplings b . ‘ i *
1.547 + 0.005 200 ps 400 ps 600 ps 800 ps 1000 ps
(Statistics from 10* trials)
1.686 + 0.017
1.492 + 0.007
1.462 + 0.014 Good start, but a serious problem remains:

(Experimental diffusion coefficient for multicrystalline pentacene: 0.5 x 103 cm? s%)

Withwechayakhlung et al. J. Chem. Phys. 158, 2023, 204106

Coupling model restricted to only one type of molecule
(pentacene). Cannot use this for virtual screening!
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General exciton coupling model
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Towards a new coupling model that works for all types of molecules?

Molecule j

Excitation onJ,
j in ground state.

Excitation onj,
i in ground state. \ /

1 M)J
Longuet-Higgins showed that v;; can be approximated as a sum Y Qa B
over simple, Coulomb-like terms*: Vij ~ E : r, —Ig
aci,fej
0, is the atomic transition charge (ATC) for atom a.
It measures the change in the electron density on atom a when Q’L _ () (I‘) dr
. . . o IOtr
molecule i transitions from the ground to the excited state
(pi/(r) is called the transition density) r on atom «

This is known as the ATC approximation. It has never been tested
extensively, so we put it to work... *Longuet-Higgins. Proc. Roy. Soc. 235, 1956, 537



300

Towards a new coupling model that works for all types of molecules?

250 A

200 A

Exciton coupling computed by direct integration®* (meV)

Exciton coupling computed from ATC approximation* (meV)

QLQ’
> ot

Io

a€c,BEy

50

100

150

200

250

* TDDFT with w-B97XD xcf with 6-31+G(d,p) basis set as implemented in Gaussian 16.

We tested the ATC approximation for molecular dimers
extracted from 1989 organic crystals in the CCDC
database (Cambridge Crystal Data Center)

Good agreement, with only small deviations for strong
coupling cases (ATC approximation neglects some close-
range quantum effects)

=> Instead of creating an ML model for couplings directly,
let’s make an ML model for atomic transition charges (Q,).

We could then compute v;; for any type of molecule using
the ATC approximation.

Weal et al. J. Chem. Phys. 163, 2025, 024125



Graph neural network to predict atomic transition charges (ATCs)

—— —— ——
y | | L. Average
8 h 0M h, .M h/2M | over m &
OM .M LM vectors
—_— h2 5 — h2 doo = h2 _____ > g2 e
h30,M h3 1.M h3L,M
Em
M vectors . L{ h,O" U h,WM U hy,tM
per atom
Molecular graph Iterative feature embedding Molecular graph Graph Atom readout
L : : : : readout e
Initial atom descriptors v; Message parsing between atoms Final atom descriptors ATC predictions

Initial bond descriptors €;

— Neural networks /
non-linear transformations

Implementation

SOAP (Smooth Overlap of Atomic Positions) descriptors used for v,.
An integer-valued descriptor corresponding to hybridization state also incorporated (sp, sp2, sp3).

Integer-valued descriptor for bond type (single, double, etc) used for e;.

Other settings and training procedure followed Han et al. Phys. Chem. Chem. Phys. 24, 2022, 26870.



Predicted ATC Value (q)

Graph neural network performance

Performance on test set (10xCV fold)

o
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]
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(from 1743 molecules) =
o
Niese =~ 10,000 atoms <
1 12 *fe (from 100 molecules)
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01 02 03 04 05 06 07 0.8
DFT ATC Value (q)

Reasonable accuracy when predicting ATCs.
Generality achieved - couplings predicted with good accuracy for a

range of important organic photovoltaic materials!
Weal et al. J. Chem. Phys. 163, 2025, 024125

Exciton coupling predictions for important
organic photovoltaic materials (FREAs)

150 A e EH-IDTBR (Dimers extracted
IDIC from crystals)
e |TIC g /°
100 1 ITIC-2C| ;o
e ITIC-4F 3
50 7 ¢ Y6 :.:O' :. .
5 ) ¥
T
5
-50 - o i
® .:.o
-100 - .,
~ Qa Qﬁ
vig T —r15|
-150 1 acifej T TP
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Coupling Obtained from ATC (DFT)

®
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ITIC 2CI
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Coupling with GNN ATCs (meV)

Let &, be the error of the O, prediction (g, =

Then v; = v;S\N+ E| + E,, where E,

Coupling predictions for important organic

150 A
100 -

50 -

-50 -
-100 A

-150 A

How general? Error propagation limits accuracy for weakly coupled cases

photovoltaic materials (FREAs)

e EH-IDTBR
+ IDIC )
o ITIC Y
ITIC-2C| i
o ITIC4F X]
Y6 '.!‘..'.. .
K ol
JRD
14
" - QaQB
—|rq —1g
a€l,BEY
450 -100 -50 O 50 100 150

Coupling with DFT ATCs (meV)

1000

750 -

Coupling with GNN ATCs (meV)

=750 A

—1000

Couplings for dimers extracted from 1000 organic crystals

500 -
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0-

—250 A
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loglE|

Qa - QaGNN)-
= €0 N/|ry - 1p| and E, = Y gq4/|1 - ¥p).
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Coupling with DFT ATCs (meV)
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" loglE)
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s S‘%
GNN

&

DFT

1000

First- and second-order errors can be large for dimers where coupling is in fact weak (| v;| less than about 75 meV).

For other cases, the method seems reliable.

Weal et al. J. Chem. Phys. 163, 2025, 024125



Kinetic Monte Carlo simulations using GNN-predicted ATCs

Exciton Marcus hopping rates:
Reorganization energy
° GNN-predicted exciton coupling (TDDFT-calculated)
. 1
Molecule i Molecule j 2 2
kij = —— G exp - @
1) —
% % MepT ) T AkpT
M}- PN >
Wﬁ @ 0412
P . g e EH-IDTBR
7 f y , 0 IDIC
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Good predictions of diffusion coefficient S Lol L.
] . . e
obtained for multiple materials! = . 8
(0]
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S ° Weal et al. J. Chem.
2 o s Phys. 163, 2025,
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Diffusion Coefficient (obtained from DFT ATC values) (cm?s™)



Closer to high-throughput kinetic Monte Carlo (kMC)?

Candidate Candidates with high exciton
organic semiconductors diffusion coefficients
Exciton X~ @ -
A ST
S
Molecule i Molecule j

Computational overhead remains! .
dicted exciton coupling Reorganization energy
. GNN-predicte 3
We succeeded to create a general ML scheme to predict (TDDFT-calculated)

couplings. T Z U?j A
o o . o kij = —exp | —

But reorganization energies still require expensive time- Nk h A4kgT

dependent DFT calculations. We still have work to do!



hv Summary of part 2

Acceptor Layer

Sun ~ \ \@\\ ~

Donor Layer

Transparent
Cathode

Organic solar cell

(www.solarreviews.com/blog/organic-solar-cells/) /\ /\ /\

Acceptor Molecule:\ Exciton: Donor Molecule:‘

Exciton X el

@’

olecule i Molecule j

* Kinetic Monte Carlo simulations might be used for screening organic
semiconducting materials. However, the computational times required
for exciton hopping rates need to be significantly reduced first.

* We created a new method for quickly computing exciton coupling
parameters. It combines the atomic transition charge approximation and

a graph neural network.
E * The method generalizes widely across different molecule types.

References: Wechwithayakhlung et al. J. Chem. Phys. 158, 2023, 204106

2
- m ﬁ A Weal et al. J. Mater. Chem. C. 24, 2024, 8748
U= \MepT ) B P\ dkpT Weal et al. J. Chem. Phys. 163, 2025, 024125




Lecture topics

Simulation of on-surface molecular self-assembly

Machine learning for organic photovoltaic materials

{ What’s next? J




Molecular self-assembly research

Interface structure
prediction

New
challenge!

Exciton transport
simulation

L

- -
,—-" _‘At'



Thailand team
Inorganic semiconductors, experiment

This work:
¢ Interface region @

Previous work: Goal T | PR
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Project focus: organic-inorganic interface in organic solar cells

'Acceptdr._

(https://discovery.kaust.edu.sa/en/article/6432/guiding-the-way-to-improved-solar-cell-performance/)

Can we predict the atomic-level structure of the interface? @@ é}

Can we simulate charge separation at the interface? —B@' ------

Can we use these simulations to guide experimental
solar cell fabrication?

Can experiment guide simulations?

(https://www.solar.fau.de/research/devices/)
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