2020/9/1 Lecture 7 (15:00-16:30) Functional Oxide Spintronics and

LBMO

STO(100)

CMD37

2 nm

the material design

ISIR, Osaka University Teruo Kanki

E-mail: kanki@sanken.osaka-u.ac.jp)

2 Sir 2

Jewelry (Spinel, Garnet)

Functional Oxides

Transition Metal Oxides

Information processing and data storage materials related with our daily life

5 isin 5

Face-centered cubic => Closed pack structure

6 **Sisir**

Perovskite structure: ABO₃ e.g. SrTiO₃

Interspace of close packed oxide ions : Octahedral interspace $O^{2}=1.40 \text{ Å}$, $Sr^{2+}=1.44 \text{ Å}$ (12 coordination), $\geq 0.414r$ Ti⁴⁺=0.42 Å (6 coordination)

1 isir 🕎 7

Orbital bonding

Electron distributions and energies of molecular orbitals in (a) H₂ and a heteronuclear molecule AB

8 🖓 8

From orbital to band formation

Orbital energies of (a) atom, (b) small molecule, (c) large molecule, (d) solid, and (e) density of states corresponding to (d)

Existence of electrons - Orbital shape

ISIR 🕎 11

Periodic Table of the Elements

Crystal field splitting of perovskite structure

Octahedral ligands

 $La^{3+}Mn^{3+}O_{3}$

Required interaction for material design

Kanamori-Goodenough rules

60 years ago

Kanamori former president of Osaka Univ.

Superexchange interaction

→Indirect interaction between two magnetic atoms through non-magnetic atom

(a) Fe²⁺ - O²⁻ - Fe²⁺ 間の超交換相互作用模型

 $(3d^6 - 2p^6 - 3d^6)$

Considering an excited state in the case of electron transfer from 2*p* orbital to 3*d* orbital

(transfer integral) $t_{pd} = \int \phi_d * V_{pd} \phi_p dr$

bonding rule

n < 5

Considering a direct exchange interaction (J_{pd}) between 2p spin and 3d spin

Sign of J_{pd} Ferromagnetic $J_{pd} > 0$, Antiferromagnetic $J_{pd} < 0$

直交性 +			直交性 -				
	, + -	р,	++++		\supset		
$\int \psi_{\mathbf{p}} \psi_{\mathbf{d}} dr = 0 \qquad \qquad \int \psi_{\mathbf{p}} \psi_{\mathbf{d}} dr \approx 0$							
(+:;	直交,	-:非直交,	(σ), (π)	はヮおよび	π結合)		
d		p _x	P _y	p,	s		
$3z^2 - r^2$	X	- (σ)	+	+	- (σ)		
	(\hat{Y})	+	$-(\sigma)$	+	- (σ)		
	Z	+	+	$-(\sigma)$	- (σ)		
$x^2 - y^2$	X	- (<i>o</i>)	+	+	- (σ)		
	Y	+	$-(\sigma)$	+	$-(\sigma)$		
	Z	+	+	+	+ .		
xy	X	+	-(π)	+	+		
	Y	$-(\pi)$	+	+	+		
	Z	+	+	+	+		
yz	X	+	+	+	+		
	(Y)	+	+	$-(\pi)$	+		
	Z	+	$-(\pi)$	+	+		
zx	X	+	+	- (π)	+		
	Y	+	+	+	+		
	7	$-(\pi)$	+	+	+		

••• Orthogonal character of J_{pd}

 $3d^6$ $2p^6$ $3d^6$

FeO is an antiferromagnetic material

Orthogonal character table in case that d orbital function locates the origin and

s and p orbitals arrenge Orthogonal coordinates of X,Y and Z axies

Ex.) Mn⁴⁺ - Mn⁴⁺ : Antiferromagnetic

Mn⁴⁺ O²⁻ Mn⁴⁺

(+:	胆父,	一:非直父,	$(\sigma), (\pi)$) ជេត្តភ្លេ	π 稻合)
d		px	P y	p _z	s
$3z^2 - r^2$	X	- (σ)	+	+	- (σ)
	(\hat{Y})	+	$-(\sigma)$	+	- (σ)
	Z	+	+	$-(\sigma)$	- (σ)
$x^2 - y^2$	X	- (σ)	+	+	- (σ)
	(Y)	+	$-(\sigma)$	+	- (σ)
	Z	+	+	+	+ .
	X	+	-(π)	+	+
xy	Y	$-(\pi)$	+	+	+
	Z	+	+	+	+
	X	+	+	+	+
yz	(Y)	+	+	$-(\pi)$	+
	Z	+	$-(\pi)$	+	+
	X	+	+	- (π)	+
zx	Y	+	+	+	+
	Z	-(π)	+	+	+

Double exchange interaction

Magnetism modulation due to change of electron transfer integral

$$\boldsymbol{H} = -\boldsymbol{t}_{\mathrm{Mn-Mn}}\cos(\frac{\boldsymbol{\theta}}{2}) - K_{Hund}\boldsymbol{\sigma}\boldsymbol{S}_{\mathrm{Mn}} - J_{\mathrm{t2g}}\sum_{LMnO}\boldsymbol{S}_{\mathrm{Mn}}^{t2g}\boldsymbol{S}_{\mathrm{Mn}}^{t2g}$$

Colossal magneto resistance (CMR)

Temperature dependence of resistivity with a variety of magnetic fields in $La_{1-x}Sr_xMnO_3$ crystal (negative CMR). T_c indicates the Curie temperature at H=0 T.

Main parameters of transfer integral changes

Main parameters of transfer integral changes

Tensile strain

$$V_{pd\sigma} \sim d^{-7/2}$$

Compressive strain

Band width W=2zV

z: Coordination number

isir 谷 24

Material design for oxide spintronics

Material design for oxide spintronics

- (1) Introduce strain effect
- (2)Introduce magnetic interaction between different layers
- (3) Integrate different functional materials

ISIR 📿 26

Control of crystal field splitting due to strain effect

Octahedral coordination

In-plane tensile strain

Design of room temperature CMR materials

Strain effect vs $T_{\rm C}$ in LBMO films

29

^aFor x = 0.05, spin canting transition temperature $T_{CA} = 120$ K.

Stability of double exchange magnetism

Stability of magnetism induced by double exchange interaction

$$\Delta \varepsilon_{ex}^{D} = zxt_{ij} = zxb_{\sigma} \left\langle \cos(\theta_{ij}/2) \right\rangle$$

C. Zener: Phys. Rev. 82 (1951) 403
P. W. Anderson and H. Hasegawa: Phys. Rev. 100 (1955) 675
P. G. de Gennes: Phys. Rev. 118 (1960) 141

Z: the coordination number of nearest neighbor atoms ; Z=6

 t_{ij} : the transfer energy

 θ_{ij} : the spin angle between Mn_i and Mn_j

Main parameters indicating the stability of double exchange magnetism

x: the number of carriers per a Mn site

 b_{σ} : Spin-independent components (dependence of orbital overlap and bond angle of Mn-O-Mn)

Carrier density and Hall mobility

Stability of transfer integral due to lattice strain effect

Contribution elements of stability in double exchange interaction In-plane and Out-of-plane orbital overlap determination from lattice constants obtained by experiments

matrix element between p and d orbitals: $V_{pd} = d_{\text{Mn-O}}^{-7/2}$

Mn-O-Mn bond angle: 180°

2. Redistribution of e_g electrons due to lattice strain effect \rightarrow calculation by the DV-X α method Tensile strain $d_{3z^2-r^2}$ e_g $d_{3z^2-r^2}$ $d_{3z^2-r^2}$ $d_{3z^2-r^2}$ $d_{3z^2-r^2}$ $d_{3z^2-r^2}$ $d_{3z^2-r^2}$ $d_{3z^2-r^2}$ $d_{3z^2-r^2}$ $d_{3z^2-r^2}$ $d_{3z^2-r^2}$

3. Anisotropy of <i>d</i> orbital	Transfer strength	Out-of-plane		In-plane	
$\int d3z^2 - r^2$	<u> </u>	$\left x^2-y^2\right\rangle$	$\left 3z^2-r^2\right\rangle$	$\left x^2-y^2\right\rangle$	$\left 3z^2-r^2\right\rangle$
	$\left x^2-y^2\right\rangle$	0	0	3/4	√3/4
$dx^2 y^2$	$\left 3z^2-r^2\right\rangle$	0	1	$\sqrt{3/4}$	1/4

Phys. Rev. B 64, 224418(2001)

Contribution elements of stability in double exchange interaction

Stability of averaged double exchange interaction

$$\Delta \varepsilon_{ex}^{D} \propto \sum_{\langle i,j \rangle} (n_{x^{2}-y^{2}}, n_{3z^{2}-r^{2}}, \alpha(\gamma_{i})\alpha(\gamma_{j}'), d_{in}^{-7}, d_{out}^{-7})$$

Transfer strength from Mn3*d* orbital to O2*p* orbital $\alpha(\gamma)$ Transfer strength from O2*p* orbital to Mn3*d* orbital $\alpha(\gamma')$

In-plane: 4 directions Out-of-plane : 2 directions

 $\begin{bmatrix} d_{in} & : \text{the in-plane Mn-O length} \\ d_{out} & : \text{the out-of-plane Mn-O length} \\ \bullet \text{ derived by XRD measurement} \end{bmatrix}$

 n_{x2-y2} : the ration of occupied electrons in d_{x2-y2} orbital n_{3Z2-r2} : the ration of occupied electrons in d_{3z2-r2} orbital calculation by the DV-X α method using experimental lattice constants

$$\Delta \varepsilon_{ex}^{D} \propto \left((3 + \sqrt{3}) n_{x^{2} - y^{2}}^{2} + (1 + \sqrt{3}) n_{3z^{2} - r^{2}}^{2} \right) d_{in}^{-7} + 2n_{3z^{2} - r^{2}}^{-7} d_{out}^{-7}$$

Stability of double exchange magnetism

Stabilization of double exchange interaction with decreasing film thickness

What is main factors of $T_{\rm C}$ increase in strained (La,Ba)MnO₃ thin films

• Orbital overlap of in-plane and out-of-plane

Function of interface

- (1) Introduce strain effect
- (2)Introduce magnetic interaction between different layers
- (3) Integrate different functional materials

SIR 🐼 36

Control of interface magnetic interaction

Antiferromagnet LaFeO₃ Interface magnetic interaction

Combined with two materials

Ferromagnet (La,Sr)MnO₃

Spin frustration superlattice

Spin frustration superlattice

Theoretical prediction : New ferromagnet

60 years ago

Kanamori former president of Osaka Univ.

NaCl structure

Lattice-direction control superlattice

isir 42

Lattice-direction control superlattice

Lattice-direction control superlattice

isir 谷 44

Integration of different functional materials

- (1) Introduce strain effect
- (2)Introduce magnetic interaction between different layers
- (3) Integrate different functional materials

Ferromagnet/Ferroelectric material combination

Diluted magnetic semiconductor-- (In,Mn)As

Ferromagnet/Ferroelectric material combination

Ferromagnet/Ferroelectric material combination

Photonic/Ferroelectric/magnetic material combination

Photon \rightarrow Electric dipole \rightarrow Carrier spin

(1) Introduce strain effect ----- Room temperature CMR

- (2)Introduce magnetic interaction --- Magnetic superlattice between different layers Design of magnetic susceptability
- (3) Integrate different functional ----- Ferromagnetism materials + Ferroelectric