
ESopt Manual

ver 1.2.1.E

August 2011 (English version)

Division of Frontier Materials Science,

Department of Materials Engineering Science,

Graduate School of Engineering Science,
Osaka University

1

ESopt is a program package for the electronic structure calculation based on the

density functional theory (DFT). The program adopting the plane-wave expansion

method is originated from the package developed in the Institute for Solid State

Physics (ISSP), University of Tokyo, which is called “opt”. This open software is

provided as “ISSP FPSOPT” by ISSP. Our ESopt, which is a revised version of

opt, was produced by choosing functions selectively and by applying the Fortran 95

scheme. We also added another diagonalizing routine to the original version.

The original “opt” has two characteristic features.

• High readability of the source code

• Realization of a CG (conjugate-gradient method) to optimize all degrees of

freedom of the wavefunction.

The former advantage is succeeded in ESopt. To solve the memory allocation prob-

lem by Fortan 77, some routines became lengthy and hard for easy reading in the

original program. This point is avoided using Fortran 90. The latter specialty was

developed by Dr. Tadashi Ogitsu, who is now in the Lawrence Livermore National

Laboratory (LLNL), US. Compared to the ordinal CG method using the band-by-

band minimization in the band structure calculation, the method by Ogitsu per-

form the simultaneous optimization of all degrees of freedom for the Kohn-Sham

wavefunction. Thus, “opt” is a special program, whose implementation realizes the

original idea of the CG method as it is.

This manual is provided in order to achieve the next purpose. We give the basic

equations and the real implementation of the steps in this manual. By comparing

the mathematical representation and the program code, we can give beginners a

chance to perform the computation, understanding the calculation steps in their

mind. For this purpose, we do not intend to describe the theory completely, but

we select the minimum contents. However, we introduce some specific examples

showing real implementation adopted in “opt” aiming at deep understanding of the

readers.

ver. 1.0.0 The first Fortran 90 version adopting only Sopt functions optimizing

atomic positions.

ver. 1.1.0 The revised version realizing Allopt functions performing stress calcu-

lations and cell optimization.

ver. 1.2.0 The version combining the band-structure calculation.

1 Expression of the total energy

In this section, we give the expression of the total energy in the plane-wave expan-

sion method. We describe the formula when the norm-conserving pseudo-potential

2

is adopted. This allows readers to understand practical calculation methods in the

DFT simulation. We define RI , ZI , V̂
pseudo
I (r −RI) as the atomic coordinate, the

ionic charge, and the pseudo-potential of the I-th atom.

We utilize the next expression for the total energy of a crystal with the volume

Ω.

Etotal = Ekin + Eel−el + Exc + Eel−ion + Eion−ion . (1)

Here, Ekin is the kinetic energy of electrons, Eel−el represents a part of the electron-

electron interaction called the Hartree energy, which is the classical Coulomb en-

ergy for the electron charge density. We also have the exchange-correlation energy

Exc, the static electron-ion Coulomb interaction Eel−ion, and the ion-ion repulsive

Coulomb energy Eion−ion. We assume that the ion core gives the spherical potential.

Each contribution has the next expression in the real space.

Ekin =
∑
k,n,σ

∫
Ω
dr ϕ∗

k,n,σ(r)
(
−1

2
∇2
)
ϕk,n,σ(r) , (2)

Eel−el =
1

2

∫ ∫
Ω
dr dr′

n(r)n(r′)

|r− r′|
, (3)

Exc =
∫
Ω
dr εxc(n(r))n(r) , (4)

Eel−ion =
∑
k,n,σ

∑
I

∫
Ω
drϕ∗

k,n,σ(r)V̂
pseudo
I (r−RI)ϕk,n,σ(r) , (5)

Eion−ion =
1

2

∑
I,J

ZIZJ

|RI −RJ |
. (6)

Here, n(r) is the single-particle density given as,

n(r) =
∑

σ=↑,↓
nσ(r) , (7)

nσ(r) =
∑

εk,n,σ≤EF

|ϕk,n,σ(r)|2 , (8)

The Kohn-Sham orbital represented by a wave function, ϕk,n,σ(r), is given for the

n-th band with the spin σ at the sampled k point, k. The energy of the orbital is

given by εk,n,σ. The Fermi energy EF is for the imaginative independent Fermion

system.

2 Dual space formalism

In this package, each wavefunction is expanded in the plane wave basis by adopting

the periodic boundary condition. The Bloch theorem and the Fourier transformation

allows us to represent the wavefunction in a series expansion of plane waves as,

ϕk,n,σ(r) =
∑
G

ϕk,n,σ(G) exp (i(k+G) · r) . (9)

3

Here, the summation with respect to G is taken on the reciprocal lattice.

In a real calculation of atoms and molecules, we often consider a periodic struc-

ture of atoms and/or molecules, allowing the periodic boundary condition. By this

way, we can accelerate the simulation using the speed of the plane wave expansion

method. We will explein some extra limitations of the method in the latter part.

We call the unit of the periodic structure “the unit cell”. Introducing a large finite

integer N , we assume that the unit cells of N3 are periodically aligned in a lattice.

The repeating unit cells are obaying the total periodic boundary condition. Thus

we have double periodicity. We introduce a volume Ωcell as the volume of the unit

cell. The total system has the volume Ω = N3Ωcell.

We consider the Fourier transformation. We will introduce a cutoff so that a finite

descrete sum of G will appear. To derive formulae of the tansilation, however, it is

better to derive the equations for continuum system with coordinates r as continuum

variables. Therefore, in eq. (??), the summation of G is an infinite summation. The

electron charge density should have the same periodicity as the crystal. Thus we

have the Fourier transform of the density.

nσ(G) =
1

Ωcell

∫
Ωcell

drnσ(r) exp (−iG · r) , (10)

nσ(r) =
∑
G

nσ(G) exp (iG · r) , (11)

In the calculation step, both of the real space and the reciprocal space (or the

momentum space) are utilized. The integration for the exchange-correlation energy

is usually performed in the real space. the kinetic energy is much easily evaluated

in the momentum space. To perform both of numerical integration, we adopt two

representations in the real and reciprocal spaces. The method to perform these

integration by transforming information from each other is called “the dual space

formalism”. This idea with the fast Fourier transformation (FFT) allows us to

reduce the calculation steps.

The solution of the Kohn-Sham equation is represented as the wavefunction

ϕk,n,σ(G) in the reciprocal space. The single-particle density given by the wave-

functions determines each energy term in the density functional. To realize the

calculation, we should have representations of the density both in the real and reci-

plocal spaces. The procedure is given as follows.

To have a numerics, G is restricted in a finite region in the whole reciplocal space.

More precisely, the cutoff energy Ecut is introduced for the plane-wave expansion.

The Fourier coefficient of the wavefunction ϕk,n,σ(G) is assumed to be zero, when

|G|2 > Ecut. The energy cutoff determines a subspace of the reciprocal space. We

define a finite reciprocal mesh, in which |G|2 ≤ Ecut holds. （Fig. ??）Owing to the

discrete Fourier transformation, a corresponding lattice structure is given in the real

space. This latter mesh is called the real mesh. Points on the real mesh is denoted

as rj. Now we have the next procedure.

4

図 1: A schematic viewgraph explaining the real mesh and the reciprocal mesh

transformed by the Fourier transformation. In the reciprocal space (the momentum

space), the wavefunction has a finite coefficient for the plane wave with G satisfying

|G| ≤
√
Ecut.

1. The wavefunction ϕk,n,σ(G) in the reciprocal space is inverse-Fourier-transformed

to have another expression ϕk,n,σ(rj) given by Eq. (??) in the real mesh.

2. Using ϕk,n,σ(rj), the electron density nσ(ri) is calculated using Eq. (??).

3. The Fourier representation of the density nσ(ri) is given by FFT as a series

expansion.

In the last step, we utilize,

nσ(G) =
∑
j

nσ(rj) exp (−iG · rj) . (12)

3 Expression of the energy

Following the procedure given in the last section, we have {ϕk,n,σ(G)}, {ϕk,n,σ(rj)},
{nσ(rj)}, {nσ(G)}. The actual calculation is done using the formulae given in this

section. Each contribution for the energy is given by an expression per a unit cell.

3.1 Kinetic energy

This term is obtained in the reciprocal space. The kinetic energy Ēkin per a unit

cell is,

Ēkin =
∑
k,n,σ

∑
G,G′

∫
Ωcell

dr
|k+G|2

2
exp (i(G−G′) · r)ϕ∗

k,n,σ(G
′)ϕk,n,σ(G)

5

=
Ωcell

2

∑
k,n,σ

∑
G

|k+G|2|ϕk,n,σ(G)|2 . (13)

This expression may be used as it is for the discrete representation by rewriting

the sumation with a finite sumation with respect to G. The calculation of the

kinetic energy is possible by evaluating an approximated expression using the finite

difference method, since the total calculation cost will not increase so much. The

expression and the treatment is much easy in the momentum space .

3.2 Hartree energy

This term is also evaluated in the reciprocal space. We define Ēel−el as the Hartree

energy per a unit cell.

Ēel−el =
1

N3
Eel−el

=
1

2

∫
Ωcell

dr
∫
Ω
dr′

n(r)n(r′)

|r− r′|

=
1

2

∫
Ωcell

dr
∫
Ω
ds

1

|s|
∑

G,G′,σ,σ′
nσ(G)nσ(G

′) exp (iG · r+ iG′ · (r− s))

=
Ωcell

2

∑
G,σ,σ′

nσ(G)nσ(−G)
∫
Ω
ds

1

|s|
exp (iG · s) .

Here, the divergence appearing when G → 0 also appears in Eion−ion, Eel−ion and

totally cancelation of these three diverging terms happens. Thus, the diverging

term is omitted in this stage. For Ēel−el, the term for G = 0 corresponds to this

divergence. Thus, we remove this term at G = 0. Furthermore, when N → ∞, if

G ̸= 0 ∫
Ω
ds

1

|s|
exp (iG · s) = 4π

G2
.

We can derive nσ(−G) = n∗
σ(G), since the density n(r) is real. If we write n(G) =∑

σ nσ(G), then we have the next expression.

Ēel−el =
Ωcell

2

∑
G

′4π|n(G)|2

G2
. (14)

Here,
∑′

G specifies a summation except for G = 0.

When the evaluation is done in the real space, the calculation requires a six

dimensional integral and O(N2
mesh) numerical steps with Nmesh as the number of

real-mesh points. When it is in the reciprocal space, the deterministic process is the

FFT steps of O(Nmesh logNmesh) numerical steps. Thus, the calculation is easily

done in the reciprocal space.

6

3.3 Exchange-correlation energy

There are several known expressions for the exchange-correlation energy density

εxc. In this package, we adopted the Perdew-Wang expression (PW92). Compared

to the Perdew-Zunger expression (PZ81), PW92 applies the spin-polarization de-

pendence by Vosko et al. and it is given by weighted parametrization considering

the error in each calculation point of the Monte-Carlo calculation Basically, these

parameters are determined refering the Diffusion Monte-Carlo calculation of the

uniform electron gas system.

Ēxc =
∫
Ωcell

drεxc (n(r))n(r) . (15)

The exchange-correlation energy density εxc may be separated into the exchange

contribution εx and hte correlation energy density εc.

εxc = εx + εc . (16)

In ESopt, only the spin-paramagnetic states are treated. The exchange energy

density is given as

εx(rs) = − 3

4πrs

(
9π

4

) 1
3

rs = −
(

3

4πn

) 1
3

, (17)

while expression for the correlation energy density is omitted.

3.4 Electron-ion interaction

The charge of ions are treated as the classical charge distribution. For each charge

of an ion is described by the pseudo-potential. In this package, Eel−ion is calculated

by the potential V̂ pseudo
I . The effect of core electrons is included in the pseudo-

potential, so that the state of the valence electrons is explicitly determined in the

pseudo-potential method. In other word, the charge distribution of core electrons is

fixed. In this package, the energy of the pseudo-potential is given as a summation

of the local potential and the non-local potential.

Eel−ion = Elocal
el−ion + Enon−local

el−ion

=
∑
I

∫
Ωcell

drn(r)V local
I (|r−RI |)

+
∑
k,n,σ

∑
I,l ̸=l0

∫
Ωcell

drϕ∗
k,n,σ(r)δV̂

l
I (r−RI)ϕk,n,σ(r) . (18)

Here, l denotes the angular momentum. The potential adopted in the package,

one of components with l = 0, 1 or 2 is included in the local potential, where the

7

specified local component is denoted as l0. The other components are treated by

the non-local potential.

V local
I (r) = V core

I + δV l0
I . (19)

Here, V core
I is the potential by the core electrons.

In the reciprocal space, Eel−ion is given as,

Eel−ion = Ωcell

′∑
G

∑
I

SI(G)n(G)V local
I (G) + Ωcelln(0)

∑
I

αI

+ Ωcell

∑
k,n,σ

∑
G,G′

∑
I,l ̸=l0

SI(G−G′)ϕ∗
k,n,σ(G)δV̂ l

I (k+G,k+G′)ϕk,n,σ(G
′) .

(20)

SI(G) = exp (−iG ·RI) . (21)

Here, V local
I (G) is the Fourier component of the local potential of the I-th atom,

and SI(G) is the structure factor.

We noted that divergence in Eel−el, Eion−ion, and Eel−ion are perfectly cancelled,

when they are summed. Introduction of the pseudo-potential method, however,

causes a residual value and the expression of the total energy has a shift. This shift

given as the limit of G → 0 for the expression of the energy is obtained as the

difference between the local component Elocal
el−ion in the limit of G → 0 and the limit

of the Coulomb potential −4πZI/ΩcellG
2 for the I-th atom. The value is given as

αI ,

αI = lim
G→0

(
SI(G)V local

I (G)− 4πZI

ΩcellG2

)
. (22)

The energy of the non-local component is calculated by O(N2) operation steps for

N plane waves. The value is reduced to O(N) by adopting an approximation given

by Kleinman and Bylander, which is called the K-B approximation. We adopt the

formula by the K-B approximation given as,

δV̂ non−local =
∑
l,m

|δV̂ lϕl,m⟩⟨ϕl,mδV̂
l|

⟨ϕl,m|δV̂ l|ϕl,m⟩
. (23)

Here ϕl,m denotes a pseudo wave function with the angular momentum l with a

magnetic quantum number m. The eq. (??) is exact, if the wavefunctions ϕl,m form

the complete set. In the K-B approximation, since the functions are given by the

pseudo wavefunction, the expression becomes an approximated formula in general.

In a large number of systems, this approximation is known not to cause any bad

effect.

However, in some systems, a side effect by the K-B approximation is known to

appear. in a general expression, the non-local potential is given as a local expression

in the radial direction, which is called the semi-local potential. When the K-B

approximation is adopted, non-locality arises also for the radial direction. Therefore,

8

the Wronsky theorem becomes inapplicable. Thus, for the K-B approximation, the

potential may have a false bound state, which may be energetically lower than a

true bound state. This abnormal bound state is called the ghost state.

In the K-B approximation, the non-local potential δV̂ l(k+G,k+G′) is given by

the next expression.

δV̂ l(k+G,k+G′) =
1

Ω

∫
Ω
dr exp (−i(k+G) · r) δV̂ l(r)P̂l exp (i(k+G) · r)

=
4π

Ω
(2l + 1)Pl (cos θk+G,k+G′)

×
∫ ∞

0
dr r2jl(|k+G|r)jl(|k+G′|r)δV̂ l(r)

=
4π

Ω
(2l + 1)Pl (cos θk+G,k+G′)

χl
I(k+G)χl

I(k+G′)

X l
I

, (24)

cos θk+G,k+G′ =
(k+G) · (k+G′)

|k+G||k+G′|
, (25)

χl
I(k+G) =

∫ ∞

0
dr r2jl(|k+G|r)δV̂ l(r)Rl(r) , (26)

X l
I =

∫ ∞

0
dr r2δV̂ l(r)|Rl(r)|2 . (27)

Here, Rl(r) is the radial part of the pseudo wavefunction ϕl,m = Yl,m(θ, ϕ)Rl(r) for

the pseudo-potential δV̂ l(r).

3.5 Ion-ion interaction

This contribution is evaluated by the Ewald summation.

Eion−ion =
1

2

1

Ncell

∑
I,J

ZIZJ

|RI −RJ |

=
1

2

∑
n,m,L

ZnZm

|dn − dm − L|

=
1

2

∑
n,m,L

ZnZm

(
erfc(κ|dn − dm − L|)

|dn − dm − L|
+

erf(κ|dn − dm − L|)
|dn − dm − L|

)
.(28)

Here, L is the translation vector for the periodic system. The coordinate RI for

an atom is rewritten as RI = dn + L with the position of the atom in a unit cell

dn. The first term in eq. (??) is obtained in the real space adn the second term is

calculated in the reciprocal space.

f(G) = lim
µ→0

1√
Ωcell

∫
dr f(r) exp (−iG · r− µr)

=
4π

Ωcell

e−(G/2κ)2

G2
. (29)

9

Here, the Fourier coefficient f(G) behaves in the limit of G → 0 as,

f(G) ≃ 4π

Ωcell

[
1−

(
G

2κ

)2

+O(G4)

]
1

G2

=
4π

Ωcell

[
1

G2
− 1

2κ
+O(G2)

]
(30)

The first diverging term is cancelled with Eel−el and Eel−ion so that the second term

remains. Therefore, the expression of Eion−ion without the divergence is given using

the Ewald parameter γewald as,

γewald =
∑
n,m

ZnZm

[
4π

Ωcell

(∑
G

′ e−(G/2κ)2

G2
eiG·(dn−dm) − 1

4κ

)

+
∑
L

′ erf(κ|dn − dm − L|)
|dn − dm − L|

− 2κ√
π
δn,m

]
. (31)

When the number of atoms in a unit cell becomes large, the calculation time

for the Ewald summation becomes non-negligible. To save the calculation cost, we

may optimize the numerical summation required to achieve convergence. In eq.

(??), we have cutoffs for summations in the real and reciprocal space. They are

estimated as 1/κ and 2κ. When a side of a unit cell is L, the length of a reciprocal

lattice vector becomes G0 = 2π/L. In both spaces, the maximum values of lattice

vecrors required for the convergence in γewald are given as cutoff radii. We have

relations for these values as Lmax = LNRmax ∝ 1/κ and Gmax ∝ G0NGmax ∝ 2κ.

Therefore, since the total number of the lattice points in each space is estimated as

Ntotal ∝ N3
Rmax + N3

Gmax ∝ 1
(κL)3

+
(
κL
π

)3
we can minimize the calculation steps by

taking κ ≃ π
L
. This value becomes κ ≃ π

(LxLyLz)1/3
, when the cell is a rectangular

parallelepiped.

4 Hellmann-Feynman Force

In this section, we give the expression of the inter-atomic force. The force FI

acting on the I-th atom is given by taking the derivative of the total energy with

respect to RI .

FI = − dE

dRI

= −
∑
i

[
⟨ϕi|

(
d

dRI

H

)
|ϕi⟩+

(
d

dRI

⟨ϕi|
)
H|ϕi⟩+ ⟨ϕi|H

(
d

dRI

|ϕi⟩]
)]

(32)

Here, i(= (k, n, σ)) is a set of quantum numbers specifying a Kohn-Sham wave-

function. If the Kohn-Sham Hamiltonian is written as H, we have the total energy

in a simple expression of E =
∑

i⟨ϕi|H|ϕi⟩. In general, we have contribution from

10

the wave function for the derivative, the calculation cost becomes very big. When

wavefunctions ϕi give the orthonormalized complete set of the eigen states of H,

however, the second term of eq. (??) becomes zero.

∑
i

[(
d

dRI

⟨ϕi|
)
H|ϕi⟩+ ⟨ϕi|H

(
d

dRI

|ϕi⟩
)]

=
∑
i

εi
d⟨ϕi|ϕi⟩
dRI

= 0 (33)

Thus, the expression for the inter-atomic force becomes,

FI = −
∑
i

⟨ϕi|
dH

dRI

|ϕi⟩ = − ∂E

∂RI

(34)

The equation (??) has a meaning that the physical force on the atom is given by the

partial derivative of the energy with respect to the atomic coordinate, when each

wavefunction is the eigen state of the Hamiltonian. This conclusion is sometimes

called as the Hellmann-Feynman theorem. Using the force theorem, we can obtain

the physical force acting on the atom rather easily. However, even wehn the theorem

is adopted, we need to have enough accurate convergence of the total energy to the

true ground state energy. In addition, obtaining the force with enough accuracy is

much harder than calculating the total energy with the same accuracy. The reason is

because the error in the force becomes the first order in the error in the wavefunction,

while the error in the total energy is the second order.

When the wavefunction is expanded in the plane waves, we have a special feature

that the atomic coordinates do not explicitely appear in the expression. In this con-

dition, when the derivative of the energy in our method using the norm-conserving

pseudo-potential is obtained, only two terms from Eel−ion and Eion−ion have finite

values in the derivative.

FI = − ∂

∂RI

(Eel−ion + Eion−ion) . (35)

Here,
∂Eel−ion

∂RI

is given by two contributions from the local component and the

non-local component.

5 Quantum Stress

The expression of the internal stress is given by the variational method similarly

to the force. Let’s consider an electronic state with a unit cell with the volume

Ωcell. The total energy is given as E({ψk,i(r)}, {RI}). The variational principle

tells that the ground state energy is given as the minimum of E({ψk,i(r)}, {RI})
by optimizing the variables, {ψk,i(r)}, {RI}. To obtain the internal stress, we need

11

to consider the symmetrized strain tensor ε by eliminating the lotational degrees

of freedom as the second order tensor. By the scaling relation with respect to the

infinitesimal change in ε, we have the next expression.

RI → R′
I = (1 + ε)RI ,

ψk,i(r) → ψk,i(r
′) = det(1 + ε)

1
2ψk,i(r).

The ground state energy shift as,

Etot → E(ε) = Etot +∆E(ε).

This shift ∆E(ε) is expanded in a series with respect to ε. The stress tensor σ is

given as the expansion coefficient in the first-order term.

∆E(ε) = −Tr(σε)Ωcell +O(ε2),

σαβ = − 1

Ωcell

∂E(ε)

∂εαβ

∣∣∣∣∣
ε→0

. (36)

When the strain and the stress become isotropic, we have the well-known expression

of P = − dE

dΩcell

.

The strain tensor εαβ is a symmetric tensor and G behaves as (1 − ε)G in the

first order. Moreover, Ωcell changes as det(1 + ε)Ωcell. Since Ωcelln(G) and SI(G)

are invariant, we have the next expression.

σαβ = σkin
αβ + σel−el

αβ + σxc
αβ + σlocal

αβ + σnon−local
αβ + σα

αβ + σewald
αβ .

σkin
αβ = 2

∑
k,G,i

|ψi(k+G)|2(k+G)α(k+G)β,

σel−el
αβ = −1

2

′∑
G

4π|n(G)|2

|G|2

(
2GαGβ

|G|2
− δαβ

)
,

σxc
αβ = δαβ

1

Ωcell

∫
Ωcell

drn(r)(µxc(n)− εxc(n)),

σlocal
αβ = −

′∑
G,I

n∗(G)SI(G)
∂V local

I (G)

∂εαβ
,

σnon−local
αβ = −2

∑
k,i

∑
G,G′

∑
I,l

SI(G−G′)ψ∗
k,i(G)ψk,i(G

′)
∂δV̂ l

I (k+G,k′ +G′)

∂εαβ

σα
αβ = δαβn

∗(0)
∑
I

αI ,

σewald
αβ − 1

Ωcell

∂γewald

∂εαβ
.

Here, we introduced a relative coordinate qI for the atomic coordinate, which be-

haves RI(t) = (1 + ε)qI(t).

12

6 Structure of the package

The structure of ESopt has a form explained in this section at present, although an

essential change might happen in future. When ESopt.tar.gz is unpacked, you have

a directory ESopt. In this directory, you have subdirectories named INPUT_DATA,

mknon, commons, params. We explain contents of these directories.

6.1 ESopt

In this main directory, program files (*.f90) and makefile are contained as well

as some script files to create working directories. In ESopt, input files should be

prepared in the directory INPUT_DATA. Then, you have to do make in the main

directory Excecution of the calculation is done in the working directory, whose name

is specified by a line of makefile.

6.2 INPUT DATA

In this directory, all input files are stored. Users have to create files the main input

file CORD and some controlling parameters in *.CNTL. In CORD, the structure of the

material and the conditions for the calculation are given by parameters, which are

required also in the compiling step. The control files *.CNTL determine a parameter

set, which are read from these files at run time. These controlling parameters may

change the action of the excecutable file called “opt”. In this directory we have also

the pseudo-potential parameter files and data files specifying the sampling k-point

and k vectors (or lines in the Brillouin zone) used in the band structure calculation.

6.3 mknon

In this directory, there are sub-programs to determine a parameter set required in

the actual computation. Because the programs detemine internal parameters, the

user is just requested to define essential input parameters. The first sub-program

kbexe obtains the mesh for FFT, the number of Fourier components, and the cutoff

using the size of the unit cell. The number of states as well as the total charge is

given by a summation of the valence electrons in each atom.

The subprogram outputs some of parameters specific to a system in a data file

parameters.data, which is written in a Fortran unformatted form, Others are stored

in input.dat, which is also an unformatted file. The second subprogram mknon

obtaines the FFT mesh in a rectangular distribution in the momentum space and a

list of the Fourier components in the cutoff radius by defining correspondence to the

mesh points, and outputs the arrays in gpt_list, whic is also unformatted. These

sub-programs run automatically, when the user executes make.

13

6.4 commons and params

In this package, variables and arrays are transfered among subroutines by the

following rule. The essential arrays are defined as the global arrays in a module by

the definition of the public array, which are refered in each subroutine. Some of

variables are written in a common statement. This is because our revision of the

original Fortran 77 package is not complete. Using parameters determined by mknon,

the size of each array is obtained to use in the allocation of the global array. The

data mknon/parameters.data is read by parameters.f90, while arrays are given

by globalarray.f90. Some variables commonly used in subroutines are written as

a header file stored in commons. In params, some parameters including the LDA

parameters, which are independent of material, are stored.

7 Overview of the action

A typical procedure to perform computation using ESopt is the following.

1. By creating INPUT_DATA/CORD, the user set the system parameters including

atomic coordinates, atomic species, and the unit cell, as well as the essential

conditions for the cutoff radius, and the k-sampling method.

2. The user should check and write destination, which determines the name of

the working directory and is written in the line DESTDIR=destination at the

head of makefile. In this instruction, we omit a description how to handle

the machne dependence.

3. Do make.

4. Next, cd destination. Set the control files, SOPT.CNTL, ALLOPT.CNTL, FILE_IO.CNTL,

for the execution properly.

5. Run the prgram by ./opt, or by submitting job by qsub qsub using the job

scheduling system, SGE. In the last action, the first qsub is the command,

while the second qsub is a script prepared when you run make.

8 Inputs and outputs

As explained in the last section, the main steps are 1) prepare INPUT_DATA/CORD,

makefile, 2) make, 3) change your directory to the working directory, 4) prepare

*.CNTL. Then the preparation for the run is completed. Now instruction of inputs

and explanation of outputs are given.

14

8.1 CORD

The format of INPUT_DATA/CORD are the following. This example describes Si in

the diamond structure.

++

+ <<<<<<<<<<<<<<<<<<< Basic Inputs >>>>>>>>>>>>>>>>>>>>>>>>+

++

#Atom coordinates relative to unit vectors, Atom,mode.

0.250000000D+00 0.250000000D+00 0.250000000D+00 Si o

0.500000000D+00 0.500000000D+00 0.500000000D+00 Si o

#^ ^ ^ ^ ^ ^ ^^ ^

This part determines the atomic coordinates in the internal coordinate, which is

the relative coordinate with respect to the unit vectors. The input field starts

from # and ends at the second #. The number of lines gives the number of atoms.

Each component of the relative coordinate has to be written by numbers filling an

area from ^ to ^. This is a fixed format. The atomic species are given by two

characters identifying the lower-case letter and the chapital letter. The user specify

with the value as Si. A small letter in mode specifies the motion of the atom, where

the atom with o is optimized and that with f is fixed. The number of valence

electrons and the pseudo potential parameters like l0 for each element is written in

INPUT_DATA/TABLE_OF_ELEMENTS.

================<< Other basic inputs >>=========================

__

| unit_vec: Primitive vectors of unit cell in real space [Ang]|

| kp_file: Sampling type of primitive F.B.Z. |

| [file name with 6 char.] |

| E_cut: Cutoff energy for plane-wave [Ry] |

| band_calc: Choice [yes|no|metal|bands|mband] |

| f_crt: Critical force [Ry/a.u.] for judging convergency. |

| f_tol: Parameter for judging convergency of electronic |

| deg. freedom.(Relative) |

| calc_mode: Calculation mode.(bas[ic] or ext[entended]) |

| ideb: ideb = 1; Running verbose mode. |

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

&basic_input

unit_vec = 2.715, 0.000, 2.715,

15



2.715, 2.715, 0.000,

0.000, 2.715, 2.715,

kp_file = ’DP10GM’,

E_cut = 8.0,

band_calc = ’metal’,

f_crt = 5.0D-03,

f_tol = 1.0D-8,

calc_mode = ’bas’,

ideb = 0

&end

This section is given by the namelist format of Fortran.

• unit_vec : The unit vectors for the unit cell are given in

a1x a1y a1z
a2x a2y a2z
a3x a3y a3z

In this program, the reciprocal lattice vectors are defined by

ai = (aix, aiy, aiz), (37)

and obtained as

b1 =
a2 × a3

2πa1 · a2 × a3

,b2 =
a3 × a1

2πa1 · a2 × a3

,b3 =
a1 × a2

2πa1 · a2 × a3

. (38)

• kp_file : This line specifies the file for the k-point list used in the sampling.

In this package, the list files are prepared and written in the input manually.

’DP10GM’ is for the cubic system using only the symmetry of the point group

O.

• E_cut is the cutoff energy Ecut in the atomic unit, Ry.

• band_calc is a switch to change the calculation scheme. If it is ’metal’,

the occupation number around the Fermi level is smeared with the Fermi

distribution function. If ’bands’ is selected, the band structure calculation

using the mode ’bas’.

• f_crt : The convergence criteria for the interatomic force.

• f_tol : The convergence criteria for the CG iteration in the electronic state

calculation.

16



• calc_mode : The switch for the calculation mode. If it is ’bas’, optimization

of the atomic position is possible. If it is ’ext’, optimization of the unit cell

is possible with a constant pressure mode. ideb : A parameter controling the

output (1 for the verbose mode, 0 for the ordinal mode.)

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+<<<<<<<<<<<<<< Mode dependant parameters >>>>>>>>>>>>>>>>>>>+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

==============<< Case 1; band = yes or metal. >>=============

______________________________________________________________

| pwidth: Width of graduall cutoff for occupation number[Ry].|

| incw: Eigen states is sorted in every incw CG steps. |

| ncband: Number of un-occupied states. |

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

&METALD

pwidth=0.005,

incw=10,

ncband=4

&END

The part “Case 1” gives parameters for the mode ’metal’. pwidth determines the

width for the Fermi distribution. incw is the number of an interval between the

neighboring steps, when the program checks the order and the occupation of the

energy eigen states around the Fermi level.

====<< Case 2; cmode = ext. (Variable cell simulation.) >>====

___[Constant-cutoff is mimiced with following parameters.]___

| |

| vke: Kinetic energy is scaled in vke where |

| |k+G|^2 is beyond E_cut. |

| sigma: Above scaling is faded in over sigma. |

| defmax: Maximum deformation of unit-cell allowed in this |

| simulation. |

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Original

vke = 2.0,

sigma = 0.05,

defmax = 3*0.05

17



&mimicd

vke = 2.0,

sigma = 0.10,

defmax = 3*0.05

&end

The part “Case 2” controls a function to reduce a possible sudden change in the list

of the G vectors, when the constant-pressure molecular dynamics is done. This part

is not in use for the present package.

8.2 SOPT.CNTL

“Sopt” performs the fixed cell mode. The cell is not necessarily the same as the

unit cell of a crystal, but may be a super cell. INPUT_DATA/SOPT.CNTL is written in

the namelist format of Fortran. The contents are the following.

&soptcntl

itmaxs=1,

f_crt=0.005,

ftol = 1.0d-9,

itmaxd=200,

delta = 0.4,

ideb = 0

&end

• itmaxs : The maximum allowed steps for the structural optimization.

• f_crt : The convergence criterion for the structural optimization. When the

maximum of the absolute value of an interatmic force becomes less than this

value, the convergence is assumed to be achieved. The unit is A.U.

• ftol : The convergence criterion for the electronic state calculation. This

value is compared with the relative change in the total energy per a CG step.

• itmaxd : The maximum value of CG steps in the electronic state calculation.

• delta : The width of the optimization step for the atomic structure. This is

a proportional constant for the interatomic force.

18



8.3 ALLOPT.CNTL

“Allopt” performs the variable cell mode. Using this mode, the full structural op-

timization and the constant-pressure molecular dynamics are realized. The contents

of INPUT_DATA/ALLOPT.CNTL are the following.

0. Chose a mode.

mode = ’md|op’: Molecular Dynamics or Optimization.

In case that MD is chosen, you decide whether "Nose’s constant

temparature formula" is used or not.

&modesw

mode=’md’,

nose = ’yes’,

&end

• Using functions of “Allopt”, refering the interatomic force and the internal

stress, we can make the simulator to perform the molecular dynamics by

mode=’md’, or the structural optimization by mode=’op’. When nose=’yes’

is specified, the Nosé thermostat is used to control the temperature. If nose=’no’,

opt performs a molecular dynamics without temperature control.

0-a. Mode dependant parameters.

nose: In case that nose = ’yes’, constant temparature simulation

with following parameters is performed.

unit: The unit of temparature.[au|K|eV]

temp: Temperature.

q_inv: This value corresponds to Q^(-1).

In case that q_inv = 0, then zeta = 0.

See, Nose, Solid State Physics, Vol. 24, pp. 98-106(1989).

Nose, Mol. Phys., Vol. 52, p 255(1984).

q_inv = 0.05??

&noseparam

unit = ’K’,

temp = 100.0,

q_inv = 0.01,

&end

p_crt: Convergence parameter to judge convergence of pressure in [GPa].

19



gamma: Friction ratio. gamma is in [0-1]. If gamma =1, MD is done.

&optparam

f_crt=1d-10,

ftol=1d-8,

p_crt=0.0001,

gamma = 0.5,

&end

• unit determines the unit of temperature, which may be in Kelvine or in elec-

tron volt (eV). The value is given by temp. Another parameter q_inv is the

Nosé parameter.

• f_crt The convergence criterion of the interatomic force for the structural

optimization. The unit is in the atomic unit.

• ftol The convergence criterion of the total energy of the electronic state.

• p_crt The convergence criterion of the pressure for the structural optimiza-

tion. The unit is in Ry.

• gamma A damping factor of the velocity for both the atoms and the cells.

===========================================================================

1. Define external environment.

--------------------------------------------------------------------------

1-1. Pressure

iso: A switch to select isotropic or anisotropic pressure.

Case; iso = ’no’, pext_3d_[i|f](1:3) is read.

Case; iso = ’yes’, pext_3d_[i|f] is not read.

pext_ini: initial pressure

pext_fin: final pressure

&extpress

iso=’no’,

pext_init=0.0,

pext_final=0.0,

pext_3d_i=0.0,0.0,0.0,

pext_3d_f=0.0,0.0,0.0,

&end

20



• iso determines whether the isotropic pressure is applied or not.

• A set of pext_init and pext_final or another set of pext_3d_i and pext_3d_f

we can specify the initial and final values of the external pressure in the molec-

ular dynamics.

---------------------------------------------------------------------------

1-2. Parameters concernig how the pressure is introduced and how MD runs.

nsec_p: External pressure is gradually enforced.

Sectioned by nsec_p steps between pext_fin and pext_ini.

nstp_i: nstp_i MD steps are performed at the pext_ini.

nstp_g: nstp_g MD steps are performed at each pressure

except for pext_ini.

&prscntl

nsec_p=10,

nstp_i=10,

nstp_g=1,

&end

• Using nsec_p, nstp_i, and nstp_g we can control the change in the external

pressure.

==========================================================================

3. Parameters for controlling evolution.

delt_t: Time interval in femto second.

ww: Fictitious mass ratio [w/mass]

itmaxa: Maximam iterations for MD.

itmaxd: Maximam iterations in diagw.

&mdparams

delt_t=5.0,

ww = 100000.0,

itmaxa=500,

itmaxd=200,

&end

• delt_t：The time step for the molecular dynamics.

21



• ww：The imaginative (artificial) mass for the unit cell.

• itmaxa：The total steps of the molecular dynamics.

• itmaxd：The maximum steps for the CG steps in the electronic structure

calculation.

=========================================================================

4. Initial condition.

ekin_init: Initial kinetic energy is scaled in this value.

init_conf: Switch how is the initial velocities are given.

Case; init_conf = ’given’, read from iveloc namelist in this file.

Case; init_conf = ’rando’, random vectors, generated with ’iseed’,

is used.

ivpoint: Initial kinetic energy is given at ivpoint step.

&initveloc

ekin_init = 10.0,

ckin_init = 0.0,

init_conf = ’given’,

iseed = 180,

ivpoint = 1,

&end

------------------------------------------------------------------------

4-1. Define initial direction to move.

This parameters are read only in case init_conf = ’given’.

how: Case; how = ’rel’, final conf - initial conf is used.

Case; how = ’abs’, final conf. is used as a vector.

latv_i(3,3): initial primitive vector in real space [Ang]

latv_f(3,3): final primitive vector in real space [Ang]

coordi(3,natm): initial coordinate

coordf(3,natm): final coordinate

Example for structural transformation from cubic-diamond to beta-tin

of silicon.

&iveloc

22



how = ’rel’,

latv_i =

2.715, 0.000, 2.715,

2.715, 2.715, 0.000,

0.000, 2.715, 2.715,

latv_f =

2.715, 0.000, 2.715,

2.715, 2.715, 0.000,

0.000, 2.715, 2.715,

coordi =

0.000000000, 0.000000000, 0.000000000,

0.500000000, 0.500000000, 0.000000000,

coordf =

0.000000000, 0.000000000, 0.000000000,

0.500000000, 0.500000000, 0.000000000,

&end

• This part describes how to fix the initial velocity. In ESopt, this final part of

coordi and coordf are skipped.

8.4 FILE IO.CNTL

The contents of INPUT_DATA/FILE_IO.CNTL are the followings.

======================================================================

1. Parameter(s) to controll output.

&file_io_cntl

read_file=’no’,

initial_file=1

&end

intchg: interval of charge output

&outcntl

intchg = 10,

intefl = 20,

intwf = 10,

&end

23



2. Debug Flags

&debug_fl

ideb = 0

&end

• read_file : This parameter specifies a way to read the result of the atomic

configuration and the wavefunction determined in a former calculation. One

of ’cont’, ’wyes’, ’cyes’, ’syes’ or ’no’ are selected. The action for each

option is the following.

– ’cont’: The structure given by STRUCT/strct and the wavefunction in

fort.98 are read.

– ’wyes’: The wavefunction in fort.98 is read.

– ’cyes’: Structural data in STRUCT/cell-XXX and STRUCT/latcrd-XXX

is read. Here, XXX means a number given in the format I3.3, which is

specified by initial_file. The wavefunction in fort.98 is read.

– ’syes’: Structural data in STRUCT/cell-XXX and STRUCT/latcrd-XXX

is read. Here, XXX means a number given in the format I3.3, which is

specified by initial_file.

– ’no’: The structure is given by CORD in INPUT_DATA and the wavefunction

prepared in the program is used.

• initial_file : When read_file=’cyes’ or read_file=’syes’, this value

gives XXX. If read_file has other value, this option is neglected.

• intchg : The interval for the steps, when the charge density is output.

• intefl : The interval for the steps, when MONIT/energy is output. If the user

wants to reduce the time cost for IO, this value should be increased.

• intwf : In an older version, this value specified the interval for output of

MONIT/wave000 storing the wave function. In the present version, the value

is given in fort.99. If the user wants to use this information to continue the

simulation, this file may be copied into fort.98.

8.5 kpoint

The contents of kpoint is the following.

24



number of line (i4) = 7

^^^^

G X K G L K W X

number of mesh (i4) = 10

1.000000000 0.000000000 0.000000000

1.000000000 0.500000000 0.500000000

number of mesh (i4) = 10

1.000000000 0.500000000 0.500000000

0.750000000 0.375000000 0.375000000

number of mesh (i4) = 10

0.750000000 0.375000000 0.375000000

0.000000000 0.000000000 0.000000000

number of mesh (i4) = 10

0.000000000 0.000000000 0.000000000

0.500000000 0.500000000 0.500000000

number of mesh (i4) = 10

0.500000000 0.500000000 0.500000000

0.750000000 0.375000000 0.375000000

number of mesh (i4) = 10

0.750000000 0.375000000 0.375000000

0.750000000 0.250000000 0.500000000

number of mesh (i4) = 10

0.750000000 0.250000000 0.500000000

0.500000000 0.000000000 0.500000000

The value of number of line determines the number of k lines in the Brillouin

zone, on which the energy dispersion is obtained. The number is limited by 20.

Assume here that the number is 7 as above. These k lines have to form a continuous

loop in the zone. The next filled line below an empty line shows the name of the

special points determining two ends of each k lines. If you want, you may use

conventional names owing to their symmetry. Next, we use three lines per each k

line. The number of divisions of the k line and two end points in the reciprocal

lattice of b1, b2, b3 are given.

8.6 Outputs

In the calculation, a sub-directory named by MONIT is created in the working

directry, and in this directory there apperas temporal information on the energy

etc.. The total energy is in energy. The wavefunction may be given in intwf,

if properly specified in the code. (This option is switched of in ESopt.) When

25



the structural optimization is finished, wave999 for the wavefunction is given. The

format of the wavefunction data is unformatted.

The charge density is stored in another subdirectory CHARGE. The file name is

chgdnsXXX.

The major output is given in the following files.

• For Sopt, see the directory RESULTS.

– cord*** : Atomic coordinates in the real space.

– eig*** : The eigen values of the Kohn-Sham equation.

– gradient*** : The interatomic force.

– H*** : The diagonal elements of a 3× 3 matrix given by the unit

vectors, the total energy and the volume of the cell.

– Htot*** : Each contribution for the total energy: 1. the kinetic

energy of the electron system, 2. the Hartree term, 3. the exchange-

correlation term, 4. the potential energy of the local potential part, 5.

the potential energy given by the non-local pseudo-potential part, 6. the

α term, 7. the Ewald summation, 8. and the summation from 1 to 7.

• For Allopt, see the directory STRUCT.

– cell*** : The lattice vectors.

– latcrd*** : The internal coordinates.

– press*** : The external pressures.

– realcrd***.xyz: The atomic coordinates in the real space.

– result*** : The total energy same as Htot*** for Sopt, the en-

thalpy, the stress tensor, and the atomic forces.

– strct*** : The parameters of the unit cell, as cell***, latcrd,

and zeta in this order.

– strn*** : The strain tensor.

26



9 Source codes of the program

In this section, we show some example of the implementation of each calculation

procedure found in the subroutines, in order to provide information for understand-

ing the action of the program.

9.1 Kinetic energy

The kinetic energy is given by a function ekin(inw) in etotal.f90.

!**********************************************************************

double precision function ekin(inw)

use parameters

use globalarray

implicit none

include ’commons/common.h’

integer :: ik,ib,ipw,inw

real(8) frm,z,fd,x

! -----<< definition of fermi distribution function >>-----

frm(z) = 1d0 + vke_mim/( 1d0 + exp( -1d0*beta_mim*z ) )

! ----------<< calc. of KE (mimicing) >>----------

!* epw[Ry],gk[a.u.],nadd

ekin = 0d0

do ib = 1,mxband_g

do ik = 1,nk_g

fd = fdist_g(ib,ik)

do ipw = 1,mxpwk(ik)

x = 0.5d0*( gk_g(ipw,ik) - ec_mim )

ekin = ekin &

+ gk_g(ipw,ik)*frm(x) &

* ( dreal(wvfn_g(ipw,ib,ik,inw))**2 &

+ dimag(wvfn_g(ipw,ib,ik,inw))**2 ) * fd

end do

end do

end do

27



ekin = 2d0*ekin/dfloat(natm_g)/effnk

return

end

• inw: To realize the CG steps, the wavefunction is stored in a few arrays. This

index specifies the array for the wavefunction.

• ib, ik, ipw: These indices represent the band index, k, and G. The list of G

appearing in the planewave exp(i(k +G) · r)) is given for each k so that the

energy of the plane wave is below Ecut.

• gk_g(ipw,ik): The array to store |k+G|2.

• wvfn_g(ipw,ib,ik,inw): The array to store the wavefunction ϕk,n(G).

In the variable ekin, we have

Ekin = 2
∑

k,n,G

|k+G|2|ϕk,n(G)|2 .

The value of ekin is thus the energy per a unit cell in Ry. Here the electron mass

becomes m = 1/2. The spin degrees of freedom is just taken into account by multi-

plying the factor 2. Another factor frm(x) represents a smearing method to achieve

a constant-cutoff simulation for the constant-pressure variable-cell simulation.

9.2 Hartree energy

The Hartree energy is given by a function eee(vcell) in etotal.f90.

!**********************************************************************

double precision function eee(vcell)

use parameters

use globalarray

implicit none

include ’commons/common.h’

integer :: ig

real(8) :: vcell

eee = 0d0

28



do ig = 2,ng_g

eee = eee + (dreal(chgg_g(ig))**2+dimag(chgg_g(ig))**2)*gg_g(ig)

end do

eee = eee*4d0*pi/vcell/dfloat(natm_g)

return

end

• chgg_g(ig): An array to store the Fourier transform of the charge n(G).

• gg_g(ig): An array storing 1/|G|2.

We have the value of the Hartree energy

Eel−el =
4π

Ωcell

′∑
G

|n(G)|2

|G|2
,

in eee. The value of eee is also given per a unit cell in Rydberg (Ry). The electron

charge is thus e2 = 2. The reason for the factor of Ω−1
cell is that Eel−el is originally

given in the double integral in the real space.

9.3 Total energy

The total energy is given by a subroutine etotal(vcell,inw,etot) in etotal.f90.

!**********************************************************************

subroutine etotal (vcell,inw, etot)

use parameters

use globalarray

implicit none

integer :: lmx,inw,i,j

real(8) :: etot(8),vcell,vatm, &

ekin,eee,exc,evl,evnl,t1,t2,dsecnd

parameter( lmx = 2 )

include ’commons/common.h’

t1 = dsecnd(’cpu’)

vatm = vcell/dfloat(natm_g)

29



etot(1) = ekin(inw)

etot(2) = eee(vcell)

etot(3) = exc(vcell)

etot(4) = evl()

etot(5) = evnl(inw)

etot(8) = etot(1)+etot(2)+etot(3)+etot(4)+etot(5)+etot(6)+etot(7)

t2 = dsecnd(’cpu’)

cpu_time(1) = cpu_time(1) + t2-t1

return

end

The energy is given for each contribution and the meaning of these parts are the

followings.

• ’ ekin = ’,etot(1) : The kinetic energy.

• ’ eee = ’,etot(2) : The Hartree energy.

• ’ exc = ’,etot(3) : The exchange-correlation energy.

• ’ evl = ’,etot(4) : The local-potential contribution.

• ’ evnl = ’,etot(5) : The contribution from the non-local potential.

• ’ ealp = ’,etot(6) : The αI term.

• ’ eewd = ’,etot(7) : The ion-ion interaction (The Ewald summation).

• ’ etot = ’,etot(8) : The total energy.

9.4 Sopt control routine

The main routine is given to switch the calculation mode by calling a subroutine.

• Allopt : The optimization of the lattice structure and the atomic structure.

The constant-pressure molecular-dynamics is possible.

• Sopt : The optimization of the atomic structure with a fixed unit cell.

• DMD : The damped dynamics with a damping factor.

ESopt is provided by stopping some functions except for Sopt and limited Allopt.

Here, we consider the function of sopt. The code below is given by omitting some

extra comments.

30



!**********************************************************************

subroutine sopt()

use parameters

use globalarray

implicit real*8(a-h,o-z)

include ’commons/lattice.h’

include ’commons/common.h’

logical(4) :: exist1, exist2

real(8) :: etot(8),delta,cpu0,cpu1

namelist / soptcntl / itmaxs, ftol, f_crt, itmaxd, delta, ideb

!==================================================================

inquire(file=’SOPT.CNTL’,exist=exist2)

inquire(file=’../INPUT_DATA/SOPT.CNTL’,exist=exist1)

if(exist2) then

open(10,file=’SOPT.CNTL’,form=’formatted’, &

iostat=ios,status=’old’)

read(10,soptcntl,iostat=ios)

close(10)

else

if(exist1) then

open(10,file=’../INPUT_DATA/SOPT.CNTL’,form=’formatted’,&

iostat=ios,status=’old’)

read(10,soptcntl,iostat=ios)

close(10)

else

stop ’Can not open SOPT.CNTL’

endif

endif

! ----------< generate g-points >---------------

call gptgen()

! -----< calc. some components of total energy >----------

call vinit()

! -----< calc. ewald sum (independent part with coordinates of atoms ) >-----

call iniewd()

31



! Main loop starts.

do its = 1, itmaxs

! ----------< optimization for electronic state >----------

call getll(etot,nloop)

call charge(0)

! ----------< calc. Hellmann-Feynman force >----------

call force(vcell)

call eforce(natm_g,stoa,grd,frc,fn)

call wfile(etot,its)

! ----------< output data >----------

call wfile0(000,its)

! ----------< judgement of convergence >-------------

if(ideb.eq.1) write(*,*)’fn, f_crt = ’,fn,f_crt

if(fn.lt.f_crt) exit

! ----------< move all atoms >--------------------------------

call mvatm(delta)

end do

! Main loop ends.

if(fn.lt.f_crt) then

call wfile0(999,its)

end if

write(*,*)’elapse time in sopt = ’, cpu1-cpu0

return

end subroutine sopt

We can see that the algorithm consists from the following steps.

1. Initialization.

(a) Input SOPT.CNTL.

(b) gptgen() : Creation of lists for G, etc.

32



(c) vinit() : Input the potential data.

(d) iniewd() : Initialization of parameters for the Ewald calculation.

2. The optimization loop.

(a) getll(etot,nloop) : The electronic structure determination process.

(b) charge(0) : The charge density determination step.

(c) force(vcell) : The force determination step.

(d) eforce(natm_g,stoa,grd,frc,fn) : An optimization of force for a

special usage.

(e) wfile(etot,its), wfile0(999,its), wfile0(000,its) : The output

routines.

(f) mvatm(delta) : The routine to obtain new atomic coordinates.

9.5 Subroutine for diagonalization

In the subroutine diagw, the CG method is applied to obtain the electronic struc-

ture.

subroutine diagw (nloop,vcell,alp,etot)

use parameters

use globalarray

implicit none

include ’commons/common.h’

integer :: nloop, inw, itmax, ik, in, ig, ist, loop, its, nwf, nnn, &

istc, i

real(8) :: etot(8), vcell, alp, eps, ang, d1, d2, dnf, step, ep, e_p,&

fret, fp, gd, avm, dmm, t1, t2, dsecnd,e2,e1

complex(8) :: ggc,gam,s, chg1

parameter (eps = 1d-10)

parameter (inw = 2)

parameter (e_p = 5d0)

! -----< calc. charge density for G-space >-----

call schmit(inw)

33



call toreal(inw)

chg1 = chgg_g(1)

etot(6)=alp*dreal(chg1)

! -----< calc. total energy(fp) >-----

call etotal (vcell,inw,etot)

fp = etot(8)

! -----< calc. force >-----

call wforce(vcell,inw)

call precnd(e_p)

call schmi2(inw,1)

itmax = max(itmaxd*2,npw_g*mxband_g*nk_g*4)

! nwf(= npw*nband*nk) is num. of wave func.

! -----< store old data of w.f. >-----

do in = 1, mxband_g

do ik = 1, nk_g

do ig = 1, mxpwk(ik)

wvfn_g(ig,in,ik,4)=wvfn_g(ig,in,ik,1)

wvfn_g(ig,in,ik,5)=wvfn_g(ig,in,ik,1)

end do

end do

end do

! -----< iteration start >-----

ist = 1

istc = 0

loop = 0

! Main loop starts

do its = 1, itmax

s = (0d0,0d0)

d1= 0d0

d2= 0d0

! -----< summation of some value >-----

nwf = mxband_g*nk_g

34



do in = 1,mxband_g

do ik = 1,nk_g

do ig = 1,mxpwk(ik)

s = s + dconjg(wvfn_g(ig,in,ik,1))*wvfn_g(ig,in,ik,2)

d1= d1+dreal(wvfn_g(ig,in,ik,1))**2+dimag(wvfn_g(ig,in,ik,1))**2

d2= d2+dreal(wvfn_g(ig,in,ik,2))**2+dimag(wvfn_g(ig,in,ik,2))**2

end do

end do

end do

ang = acos(cdabs(s)/sqrt(d1*d2))/pi

dnf = sqrt( d1/nwf )

if(ang.lt.0.46d0.and.ang.ge.0.385d0) then

call schmi2(inw,2)

elseif(ang.lt.0.385d0)then

call schmi2(inw,1)

endif

call linmin(vcell,etot,fret,ist)

if(ist.eq.0) istc=istc+1

step=2d0*dabs(fret-fp)/(dabs(fret)+dabs(fp)+eps)

! ----------< judgement for convergency >----------

if((step.le.ftol.and.ist.eq.1).or.its.gt.itmaxd.or.istc.gt.3) then

loop = loop + 1

if(loop.gt.2) then

etot(6)=alp*dreal(chg1)

call efile(etot,ang,dnf,its,ftol,step,loop)

nloop = its

write(*,*) ’Count (its,loop)’, its,loop

return

else

ist = 0

endif

endif

! ---------------------------------------------------

35



ep=fret-fp

fp = fret

call wforce(vcell,inw)

call precnd(e_p)

call eigenv(avm,dmm,its,nnn)

if(ist.eq.0.or.nnn.eq.1) then

call toreal(inw)

chg1 = chgg_g(1)

call wforce(vcell,inw)

call precnd(e_p)

endif

if(its.eq.0) ist = 0

if(ist.eq.1) then

gd = 0d0

ggc = (0d0,0d0)

do in = 1, mxband_g

do ik = 1, nk_g

do ig = 1, mxpwk(ik)

gd = gd + dreal(wvfn_g(ig,in,ik,4))**2 &

+ dimag(wvfn_g(ig,in,ik,4))**2

ggc = ggc + dconjg(wvfn_g(ig,in,ik,1) &

- wvfn_g(ig,in,ik,4))*wvfn_g(ig,in,ik,1)

end do

end do

end do

if(gd.eq.0d0) then

write(*,*)’warning. really gd = 0 ?’

return

endif

gam = ggc/gd

do in = 1, mxband_g

do ik = 1, nk_g

do ig = 1, mxpwk(ik)

wvfn_g(ig,in,ik,4)=wvfn_g(ig,in,ik,1)

end do

end do

end do

do in = 1, mxband_g

do ik = 1, nk_g

do ig = 1, mxpwk(ik)

36



wvfn_g(ig,in,ik,5)=wvfn_g(ig,in,ik,4) &

+ gam*wvfn_g(ig,in,ik,5)

end do

end do

end do

do in = 1, mxband_g

do ik = 1, nk_g

do ig = 1, mxpwk(ik)

wvfn_g(ig,in,ik,1)=wvfn_g(ig,in,ik,5)

end do

end do

end do

elseif(ist.eq.0) then

do in = 1,mxband_g

do ik = 1,nk_g

do ig = 1,mxpwk(ik)

wvfn_g(ig,in,ik,4)=wvfn_g(ig,in,ik,1)

wvfn_g(ig,in,ik,5)=wvfn_g(ig,in,ik,1)

end do

end do

end do

ist = 1

endif

nnn = mod(its,intefl)

if(nnn.eq.0) then

if(ideb.eq.1) write(*,*) ’efile in’

call efile(etot,ang,dnf,its,ftol,step,loop)

if(ideb.eq.1) write(*,*) ’efile out’

endif

end do

! Main loop ends

stop ’Maximum iterations exceeded (diagw).’

end subroutine diagw

37


