Theoretical design of high-performance thermoelectric materials and unconventional superconductors using first-principles calculations

Masayuki Ochi

Department of Physics, Osaka University

Self-introduction

Name	Masayuki Ochi
Biography	2009–2014Dept. Phys, The Univ. of Tokyo2014–2015PD researcher in RIKEN CEMS2015–presentResearch Associate in Dept. Phys, Osaka Univ.
Research Interest	Thermoelectrics Strongly correlated materials Topological phases Wave function theory

Part 1: High thermoelectric performance by quasi-1dim gapped Dirac cone

[Collaborators] Hidetomo Usui (Shimane Univ.), Kazuhiko Kuroki (Osaka Univ.)

Thermoelectric conversion (Thermoelectric effect)

= direct conversion of temperature difference to electric voltage and vice versa

enables a use of waste heat as energy resource = **clean energy**

Efficient conversion is a key for application

Electronic band structure for thermoelectric effects

Trade-off relation for a simple band dispersion

Characteristic band shapes in good thermoelectric materials

Characteristic band dispersion can enhance thermoelectric conversion efficiency

Further optimization of low-dim. band

Can we find such a band dispersion in real materials?

Paul Dirac © Wikipedia

BiS₂ layered materials

Y. Mizuguchi et al., PRB 86, 220510 (2012). known as superconductors

Y. Mizuguchi et al., JPSJ 81, 114725 (2012).

 $RO_{1-x}F_{x}BiS_{2}$ (*R* = La, Nd, etc.), $Bi_{6}O_{4}S_{4}(SO_{4})_{1-x}$,...

High controllability (chemical pressure, carrier doping, etc)

recently paid attention as thermoelectric materials

Low thermal conductivity

 $\kappa_{\text{lattice}} \sim 1 \text{ W/m/K}@T = 300 \text{ K}$

Relatively high ZT

*ZT = a measure of conversion efficiency

> A. Nishida et al., Appl. Phys. Express 8, 111801 (2015).

We find that BiS₂ layered materials can be a platform of ideal electronic structure for thermoelectric effects: low-dim. + gapped Dirac cone + multi-valley, by appropriate atomic substitution

Calculation details

DFT band calc. and Wanierization (Bi,O,S-*p* orbitals)

Black lines: First-principles Red lines: Wannier tight-binding

- WIEN2k for band calc.
- modified Becke-Johnson potential (known to give a relatively accurate band gap)
- wien2wannier and Wannier90 for Wannierization

Tight-binding model: electron transfer between Wannier functions (spatially localized orbitals)

= transfer integrals are determined so as to reproduce first-principles band dispersion

Wannier is used for getting physical insight, taking a (very) fine k-mesh, etc.

 $\epsilon_{n,\mathbf{k}}$

Boltzmann transport theory

constant relaxation time (τ) approximation rigid band approximation for carrier doping

$$\sigma = e^{2}\mathbf{K}_{0}, \ \mathbf{S} = -\frac{1}{eT}\mathbf{K}_{0}^{-1}\mathbf{K}_{1}, \ \kappa_{\mathrm{el}} = \frac{1}{T}(\mathbf{K}_{2} - \mathbf{K}_{1}\mathbf{K}_{0}^{-1}\mathbf{K}_{1}),$$
$$\mathbf{K}_{\nu} = \tau \sum_{\mathbf{k},n} \mathbf{v}_{\mathbf{k},n} \otimes \mathbf{v}_{\mathbf{k},n} \left[-\frac{\partial f_{0}(\epsilon_{\mathbf{k},n},T)}{\partial \epsilon} \right] (\epsilon_{\mathbf{k},n} - \mu(T))^{\nu}$$

- S: Seebeck coefficient
- κ_{el} : electrical thermal conductivity

A bit more about Boltzmann transport theory

For example, electrical conductivity along the x direction is given as follows:

$$\sigma_{xx} \propto \tau \sum_{\mathbf{k},\mathbf{n}} v_{x;(\mathbf{k},\mathbf{n})}^2 \left[-\frac{\partial f_0(\epsilon_{\mathbf{k},\mathbf{n}},T)}{\partial \epsilon} \right]$$

see how σ depends on several quantities...

au relaxation time (time length between electron scatterings)

: long relaxation time yields high electrical conductivity

 $v_{x;(\mathbf{k},\mathbf{n})}^2$ square of group velocity of the *n*-th band at a certain **k** point

: high group velocity yields high electrical conductivity

 $-\frac{\partial f_0(\epsilon_{\mathbf{k},\mathbf{n}},T)}{\partial \epsilon}$ derivative of the Fermi-Dirac distribution (having a sizable value only near $\mu = \epsilon$)

: only Kohn-Sham states near the Fermi level can contribute to the electrical conductivity

LaOBiS₂: electronic structure

* consider a small amount of electron carrier, i.e., near the bottom of the conduction band (shown by arrows)

cf. H. Usui et al., PRB 86, 220501(R) (2012).

Several factors weaken quasi-one dimensionality

- 1. Spin-orbit coupling (relativistic effect)
- \rightarrow hybridization between p_x and p_y

2. Electron transfer among Bi orbitals

- * conduction bands mainly consist of Bi orbitals
- 3. Energy difference between Bi and S orbitals
- → large energy difference prevents electron transfer

Several factors weaken quasi-one dimensionality

- 1. Spin-orbit coupling (relativistic effect)
- \rightarrow hybridization between p_x and p_y

2. Electron transfer among Bi orbitals

- * conduction bands mainly consist of Bi orbitals
- 3. Energy difference between Bi and S orbitals
- → large energy difference prevents electron transfer

Spin-orbit coupling (SOC)

van Hove singularity gets farther from the band edge (i.e. low-dim is weakened) by SOC band splitting

Several factors weaken quasi-one dimensionality

- 1. Spin-orbit coupling (relativistic effect)
- \rightarrow hybridization between p_x and p_y

2. Electron transfer among Bi orbitals

- * conduction bands mainly consist of Bi orbitals
- 3. Energy difference between Bi and S orbitals
- → large energy difference prevents electron transfer

Several factors weaken quasi-one dimensionality

- 1. Spin-orbit coupling (relativistic effect)
- \rightarrow hybridization between p_x and p_y

2. Electron transfer among Bi orbitals

- * conduction bands mainly consist of Bi orbitals
- 3. Energy difference between Bi and S orbitals
- → large energy difference prevents electron transfer

Bi orbital weight

If hybridization is strong at a certain k-point, the anti-bonding Bi bands should have a high energy (and a sizable S orbital weight)

On the other hand, the anti-bonding Bi bands near the band edge should have little S weight

Several factors weaken quasi-one dimensionality

- 1. Spin-orbit coupling (relativistic effect)
- \rightarrow hybridization between p_x and p_y

2. Electron transfer among Bi orbitals

- * conduction bands mainly consist of Bi orbitals
- 3. Energy difference between Bi and S orbitals
- → large energy difference prevents electron transfer

Several factors weaken quasi-one dimensionality

- 1. Spin-orbit coupling (relativistic effect)
- \rightarrow hybridization between p_x and p_y

2. Electron transfer among Bi orbitals

* conduction bands mainly consist of Bi orbitals

3. Energy difference between Bi and S orbitals

→ large energy difference prevents electron transfer

Several factors weaken quasi-one dimensionality

- 1. Spin-orbit coupling (relativistic effect)
- \rightarrow hybridization between p_x and p_y
- 2. Electron transfer among Bi orbitals
- * conduction bands mainly consist of Bi orbitals
- 3. Energy difference between Bi and S orbitals
 - → large energy difference prevents electron transfer

Quasi-one dim. can be enhanced by atomic substitution

14	15 Pnictogens	16 Chalcogens	17 ハロゲン	18
			273 ©	2 He ヘリウム 4.0026
6	7	8	9	10
C	N	〇	F	Ne
炭素	窒素	酸素	フッ素	ネオン
12.011	14.007	15.999	18.998	20.180
14	15	16	17	18
Si	P	S	CI	Ar
ケイ素	リン	硫黄	塩素	アルゴン
28.085	30.974	32.06	35.45	39.948
32	33	34	35	36
Ge	As	Se	Br	Kr
ゲルマニウ	ヒ素	セレン	臭素	クリプトン
(2.630	74.922	78.971	79.904	83.798
50	51	52	53	54
Sn	Sb	Te		Xe
スズ	アンチモン	テルル	ヨウ素	キセノン
118 71	121.76	127 60	126 90	131 29
32	83	84	85	86
Pb	Bi	Po	At	Rn
沿	ビスマス	ポロニウム	アスタチン	ラドン
114	200.90	116	117	118

- 1. Spin-orbit coupling (Relativistic effect)
- → use a light Pnictogen (than Bi)
- 2. Electron transfer among Bi orbitals
- → use a light Pnictogen and heavy chalcogen
- 3. Energy difference between Bi and S orbitals
- → use a light Pnictogen and heavy chalcogen

14	15 Pnictogens	16 Chalcogens	17 ハロゲン	18
			273 ତ	2 He ヘリウム 4.0026
6	7	8	9	10
C	N	〇	F	Ne
炭素	窒素	酸素	フッ素	ネオン
12.011	14.007	15 999	18.998	20.180
14	15	16	17	18
Si	P	S	CI	Ar
ケイ素	リン	硫黄	塩素	アルゴン
28.085	30.974	32.06	35.45	39.948
32	33	34	35	36
Ge	As	Se	Br	Kr
ゲルマニウ	ヒ素	セレン	臭素	クリプトン
72.6 30	74.922	78.971	79.904	83.798
50	51	52	53	54
Sn	Sb	Te	】	Xe
スズ	アンチモン	テルル	ヨウ素	キセノン
118 71	121-76	127 60	126 90	131 29
32	83	84	85	86
Pb	Bi	Po	At	Rn
沿	ビスマス	ポロニウム	アスタチン	ラドン
114	110	116	117	118

- 1. Spin-orbit coupling (Relativistic effect)
- → use a light Pnictogen (than Bi)
- 2. Electron transfer among Bi orbitals
- → use a light Pnictogen and heavy chalcogen
- 3. Energy difference between Bi and S orbitals
- → use a light Pnictogen and heavy chalcogen

14	15 Pnictogens	16 Chalcogens	17 ハロゲン	18
			273☺	2 He ヘリウム 4.0026
6	7	8	9	10
C	N	〇	F	Ne
炭素	窒素	酸素	フッ素	ネオン
12.011	14.007	15 999	18.998	20.180
14	15	16	17	18
Si	P	S	CI	Ar
ケイ素	リン	硫黄	塩素	アルゴン
28.085	30.974	32.06	35.45	39.948
32	33	34	35	36
Ge	As	Se	Br	Kr
ゲルマニウ	ヒ素	セレン	臭素	クリプトン
(2.630	74.922	78.971	79.904	83.798
50	51	52	53	54
Sn	Sb	Te		Xe
スズ	アンチモン	テルル	ヨウ素	キセノン
118 71	121.76	127.60	126 90	131 29
82	83	84	85	86
Pb	Bi	Po	At	Rn
沿	ビスマス	ポロニウム	アスタチン	ラドン
114	208.98	116	117	118

- 1. Spin-orbit coupling (Relativistic effect)
- → use a light Pnictogen (than Bi)
- 2. Electron transfer among Bi orbitals
- → use a light Pnictogen and heavy chalcogen
- 3. Energy difference between Bi and S orbitals
- → use a light Pnictogen and heavy chalcogen

14	15 Pnictogens	16 Chalcogens	17 ハロゲン	18
			273 ©	2 He ヘリウム 4.0026
6	7	8	9	10
C	N	〇	F	Ne
炭素	窒素	酸素	フッ素	ネオン
12.011	14.007	15.999	18.998	20.180
14	15	16	17	18
Si	P	S	CI	Ar
ケイ素	リン	硫黄	塩素	アルゴン
28.085	30.974	32.06	35.45	39.948
32	33	34	35	36
Ge	As	Se	Br	Kr
ゲルマニウ	ヒ素	セレン	臭素	クリプトン
(2.630	74.922	78.971	79.904	83.798
50	51	52	53	54
Sn	Sb	Te		Xe
スズ	アンチモン	テルル	ヨウ素	キセノン
118 71	121.76	127 60	126 90	131 29
32	83	84	85	86
Pb	Bi	Po	At	Rn
沿	ビスマス	ポロニウム	アスタチン	ラドン
114	200.90	116	117	118

- 1. Spin-orbit coupling (Relativistic effect)
- → use a light Pnictogen (than Bi)
- 2. Electron transfer among Bi orbitals
- → use a light Pnictogen and heavy chalcogen
- 3. Energy difference between Bi and S orbitals
- → use a light Pnictogen and heavy chalcogen

14	15 Pnictogens	16 Chalcogens	17 ハロゲン	18
			273◎	2 He ヘリウム 4.0026
6 C 炭 素 12.011	7 N 窒素 14.007	8 〇 酸素 15-999	9 F フッ素 18.998	10 Ne ネオン 20.180
14 Si ケイ素 28.085	15 P リン 30.974	16 S 硫黄 32.06	17 CI 塩素 35.45	18 Ar アルゴン 39.948
32 Ge ゲルマニウ (2.630	33 As と素 74.922	34 Se セレン 78.971	35 Br 臭素 79.904	36 Kr クリプトン 83.798
50 Sn スズ 118 71	51 Sb アンチモン 121.76	52 Te テルル 127.60	53 ヨウ素 126.90	54 Xe キセノン 131 29
82 Pb	83 Bi ビスマス	84 Po ポロニウム	85 At アスタチン	86 Rn ラドン
207.2 114	208.98	116	117	118

- 1. Spin-orbit coupling (Relativistic effect)
- → use a light Pnictogen (than Bi)
- 2. Electron transfer among Bi orbitals
- → use a light Pnictogen and heavy chalcogen
- 3. Energy difference between Bi and S orbitals
- → use a light Pnictogen and heavy chalcogen

Ideal electronic structure: quasi-1dim gapped Dirac cone

Relation to other thermoelectric materials

Carbon nanotube

1dim (gapped) Dirac cone

high mobility but high thermal conductivity

R. S. Prasher *et al.*, PRL **102**, 105901 (2009). Y. Nakai *et al.*, Appl. Phys. Express **7**, 025103 (2014). T. Yamamoto and H. Fukuyama, JPSJ **87**, 024707 (2018); *ibid.* 114710 (2018).

<u>AMnBi₂ (A = Ca, Sr, Eu)</u>

also have a $p_{x,y}$ network on the Bi square lattice

→ quasi-1dim gapped Dirac cone

* gap is induced by SOC

Low-dim. in the CuCh (Ch = S, Se) layer

hidden 1-dim network on the square lattice \rightarrow similarity to BiS₂ systems

MO et al., PRMater. 2, 085401 (2018).

Relation to other thermoelectric materials

Carbon nanotube

1dim (gapped) Dirac cone

high mobility but high thermal conductivity

R. S. Prasher *et al.*, PRL **102**, 105901 (2009). Y. Nakai *et al.*, Appl. Phys. Express **7**, 025103 (2014). T. Yamamoto and H. Fukuyama, JPSJ **87**, 024707 (2018); *ibid.* 114710 (2018).

<u>AMnBi₂ (A = Ca, Sr, Eu)</u>

also have a $p_{x,y}$ network on the Bi square lattice

→ quasi-1dim gapped Dirac cone

* gap is induced by SOC

Low-dim. in the CuCh (Ch = S, Se) layer

hidden 1-dim network on the square lattice \rightarrow similarity to BiS₂ systems

MO et al., PRMater. 2, 085401 (2018).

Another important factor: quantum interference

Orbital symmetry and quantum interference

Inter-layer coupling is prohibited at the $X = (\pi, 0)$ point by symmetry

<u>MO</u> et al., JPSJ 85, 094705 (2016).

Band-edge degeneracy by quantum interference

(a) Tetragonal w/o SOC

Symmetry forbids the band splitting at X → band-edge degeneracy (multi-valley)

- at 3.8 GPa, with monoclinic distortion
 - : symmetry lowering allows band splitting

<u>MO</u> et al., JPSJ 85, 094705 (2016).

Quantum interference and materials functionalities

Toward experimental realization of high-thermoelectric performance

<u>Ln(O,F)SbSe₂ (Ln = La, Ce)</u>

Y. Goto *et al.*, JPSJ **87**, 074703 (2018).

Low $\kappa = 0.8$ W/m/K for Ce

but carrier doping is very difficult

→ high $\rho > 10^{\circ} \Omega m$ @room temperature

Future issues: (1) Carrier control

(2) monoclinic instability

 $Bi \rightarrow Sb$ induces monoclinic instability and then the thermoelectric performance can be degraded

Also F substitution (for carrier doping) becomes difficult by monoclinic distortion

calc : N. Hirayama, <u>MO</u>, et al., PRB 100, 125201 (2019).

Control the blocking layer?

- 4-layer systems? → tetragonal becomes stable
 - cf.) material design of 4-layer systems:
 - K.Kurematsu, MO, et al., JPSJ 89, 024702 (2020).

Summary of Part 1

- 1) Insulating layer : suppress coupling along z-direction
- 2) quant. interference : suppress bilayer coupling
- 3) Orbital anisotropy on the square lattice : quasi-1D (controllable dimensionality by atomic substitution)

q1D gapped Dirac cone = ideal band structure (low-dim + high group velocity + multi-valley)

[Refs] MO, R. Akashi, and K. Kuroki, JPSJ 85, 094705 (2016).
 MO, H. Usui, and K. Kuroki, Phys. Rev. Appl. 8, 064020 (2017).
 MO, H. Usui, and K. Kuroki, J. Phys. Soc. Jpn. 88, 041010 (2019). (review)

Part 2 : Possible superconductivity

in transition-metal oxyhydrides

[Collaborators] Naoya Kitamine, Kazuhiko Kuroki (Osaka Univ.)

Transition-metal oxides

Playground of many kinds of intriguing physics (superconductivity, magnetism, ferroelectricity,...)

A = Ca, Sr, Ba, Y, La, etc.

carrier doping, chemical pressure

B = Transition metal (V, Cr, Mn, Fe, Ru,...) governs materials properties

 $O \rightarrow H, F, N, CI,...$

New degrees of freedom for material design

Transition-metal oxyhydrides

Crystal field (environement for cation)

x, y, z directions are equivalent

z is inequivalent

Bond breaking between t2g

H-*s* has a different parity to that for M- t_{2g} (*d* orbital), then breaks a chemical bond between *d* orbitals

cf.) H. Kageyama *et al.*, *Nature* Commun. **9**, 772 (2018).

Carrier doping by substitute H- for O²⁻

e.g.) LaFeAsO_{1-x}H_x: S. limura *et al.*, *Nature Commun.* **3**, 943 (2012); M. Hiraishi *et al.*, *Nature Phys.* **10**, 300 (2014). (Fig.)

Theoretical proposal for unconventional superconductivity

$Sr_3V_2O_5H_2$

Ladder structure

→ unconventional superconductivity? Naoya Kitamine

- E. Dagotto et al., Phys. Rev. B 45, 5744 (1992).
- T. M. Rice et al., EPL 23, 445 (1993).
- E. Dagotto and T. M. Rice, Science 271, 618 (1996).
- K. Kuroki et al., Phys. Rev. B 72, 212509 (2005).
- D. Ogura et al., Phys. Rev. B 96, 184513 (2017).

We investigate whether this material can host superconductivity by theoretical calculation

Method: First-principles calculation and an effective model

By using the effective model, we can consider strong electron correlation

Method: FLEX + linearized Eliashberg eq.

Fluctuation exchange (FLEX) approx.:

determine self-energy (energy correction by U by considering ring & ladder diagram

Linearized Eliashberg eq. :

 $\lambda = 1$ means superconducting (SC) transition

In real calculation, we fix the temperature and see λ as a measure of how superconductivity is favored in this system

$$\Delta_{ll'}(k) = -\frac{T}{N} \sum_{q} \Gamma^{s}_{lm_{1}m_{4}l'}(k-q) G_{m_{1}m_{2}}(q) G_{m_{4}m_{3}}(-q) \Delta_{m_{2}m_{3}}(q)$$

$$\Delta_{ll'}(k): \text{gap 関数}$$

$$\Gamma^{s}(k) = U + \frac{3}{2} U \chi^{sp}(k) U - \frac{1}{2} \chi^{ch}(k) U: 有効相互作用$$

$$\chi^{sp} = \chi^{0}/(1-U\chi^{0}), \quad \chi^{ch} = \chi^{0}/(1+U\chi^{0}): \exists \psi \rangle / \ll \varphi \approx$$

$$\chi^{0}_{m_{1}m_{2}m_{3}m_{4}}(q) = -\frac{T}{N} \sum_{k} G_{m_{3}m_{1}}(k+q) G_{m_{2}m_{4}}(k): \mathfrak{K} \wedge \mathbb{N} \otimes \mathbb{R}$$

Band structure: Sr₃V₂O₅H₂

FLEX + Eliashberg: Sr₃V₂O₅H₂

gap function: Sr₃V₂O₅H₂

ladder-like electronic states in Sr₃V₂O₅H₂

H almost breaks a chemical bond along x (leg direction)

- \rightarrow dxz forms a ladder with strong rung coupling
- \rightarrow favorable for Cooper pairing

Ζ

E. Dagotto et al., Phys. Rev. B 45, 5744 (1992).

Another candidate: $A_2NiO_2X_2$ (A = Ca, Sr; X = H, F, CI, etc.)

N. Kitamine, <u>MO</u>, and K.Kuroki, arXiv:2007.01553 (2020).

Monolayer systems with apical oxygen being replaced with other anions

d orbitals other than $dx^2 - y^2$ lie near the Fermi level and acts as "glue" for Cooper pair of $dx^2 - y^2$

Superconductivity

N. Kitamine, <u>MO</u>, and K.Kuroki, arXiv:2007.01553 (2020).

Summary of Part 2

 $Sr_3V_2O_5H_2$ possibly hosts unconventional superconductivity by electron doping, where d_{xz} orbitals form the two-leg ladder with a strong coupling along the rung direction

 A_2 NiO₂ X_2 is another candidate where *d* orbitals other than $dx^2 - y^2$ acts as a glue of Cooper pair of $dx^2 - y^2$ orbital. Here the characteristic crystal field by anion substitution is a key to realize this situation.

* the crystal structure is assumed in this study, so theoretical determination of the anion positions are important future issues. From the experimental viewpoint, the carrier control is also an important issue.

N. Kitamine, <u>MO</u>, and K.Kuroki, "*Designing nickelate* superconductors with d⁸ configuration exploiting mixed-anion strategy", arXiv:2007.01553 (2020).