
Institute for NanoScience Design, Osaka University
大阪大学ナノサイエンスデザイン教育研究センター

Masaaki Geshi
下司 雅章

37th CMD workshop, supercomputer course
2020, August 31st (Mon.)

Contents
 Necessity of large-scale computing
 Methods of the large-scale computing(Mainly

parallelization)
 Today’s supercomputers
 Future direction of large-scale computing

Necessity of large-scale computing
 Systems we want to study have many atoms.
 The computational cost increases N3, N6, or

exponentially.(N is the number of atoms, electrons,…)
 Some physical quantities needs a huge computational

cost in spite of a small system(high accuracy).
 There is scientific and/or industrial significance

obtained by large-scale computing.

Problems raised by large-scale
computing
 Because of huge date must be handled, huge HDD and fast IO is needed.

(~30PB in K computer, ~150PB in Fugaku)
 In shared PC clusters level, several troubles can also occur when you

increase the number of atoms, the number of k-point sampling, cut-off
energy, or the values of some parameters.
 The data of wavefunctions in first-principles calculations (~ a few GB or

more/job)
 The data of atomic positions in MD (~300GB or more if you consider one

million atoms and 10 million MD steps.)
 You have to know the remaining capacity of the home directory and/or

workspace.→It bothers other users if the HDD overflows.
 You have to know the capacity of the memory of nodes. If your job uses

the swap space, the calculation speed becomes very slow(10 times or
more).

 The problem of data analysis including visualization.
 It takes about 30 seconds to make one snap shot. If you need 1,000

pictures, it takes more than 8 hours.
 In some cases, data analysis costs more time than computational time.
 …

When we perform large-scale
computing,…
 It costs huge computational time.
 In some cases, huge physical memory of CPU is

needed.

 In order to solve these problems, we have to improve
software codes to reduce the computational time and
memory.

 Parallel computing is definitely necessary.

Methods for large-scale computing
 Speed-up techniques

 Vectorization→SIMD
 Parallelization
 Order-N method(reduce the cost o(Np)→o(N)(p=1))
 Use of specialized machine or accelerator(GPU).

 These are used in a code depending on one’s necessity.

The easiest way to speed up is to be able to realize it by
choosing proper compile options(vectorization, Automatic
parallelization, optimization,…).

Since it is not possible to speed up the code
automatically, we have to tune the code significantly.

Concept of Flynn’s taxonomy
Single data Multiple data

SISD SIMD

Single
instruction

MISD MIMD

Multiple
instruction

DATA

PEinstruction
PE PE PEPE

DATA

DATA

PE PE
PE PE PEPE

DATA

PE PE PEPE

instruction
instruction

instruction

Vectorization
 A vector processor, or array processor, is a CPU that

implements an instruction set containing instructions
that operate on one-dimensional arrays of data called
vectors(row, column, or diagonal elements, etc…).

 Vectorization is the method that we program a code to
construct regularly-arrayed data, and process the data
at a time by the vector CPU.

 Vectorization realizes the reduction of a CPU time.
 Today, this concept is included in SIMD.

Vector processing

a(1) = c(1) ＋d(1)
b(1) = c(1) ×d(1)
a(2) = c(2) ＋d(2)
b(2) = c(2) ×d(2)
：
：
a(imax) = c(imax) ＋d(imax)
b(imax) = c(imax) ×d(imax)

do i=1,imax
a(i) = c(i) ＋d(i)
b(i) = c(i) ×d(i)

enddo

a(1) = c(1) ＋d(1)
a(2) = c(2) ＋d(2)
:
:
a(imax) = c(imax) ＋d(imax)
b(1) = c(1) ×d(1)
b(2) = c(2) ×d(2)
：
：
b(imax) = c(imax) ×d(imax)

Scalar
processing

Vector processing

We tune to increase the part
being processed at the deepest
do-loop in multi do-loop.

“a” array

“b” array

Order-N
 Realized by algorithm
→No approximation Ex.: Screened-KKR

 Realized by approximation of Hamiltonian
→Approximation by localization of interaction. This type of
methods were actively studied in 90’s.
 Roughly speaking, matrices are block-diagonalized or including

similar method.
 N×N→N×Nlocal(fixed). If N increases, Nlocal not increase. (like

a tight-binding approximation)
 The accuracy of the approximation can be adjustable

depending on a required accuracy.
 One of the famous method is a Divide and conquer method（分
割統治法）. This is used in “OpenMX(Ozaki)”, “DC(Kobayashi
and Nakai)”,CONQUEST(Bowler, Miyazaki, Gillan)…

Parallelization
 This is the method to shorten the elapse time by

sharing task with more than one CPU without
changing the processing time of the task.

 This is used to share big memory(array).

Concept of parallelization
WORK1 WORK1 WORK1 WORK1

rank0 rank1 rank2 rank3

WORK2-1 WORK2-2 WORK2-3 WOEK2-4

Redundant
computation (all
CPUs compute the
same calculation)

Parallel
computation
（different CPU
computes
different
calculation)

Global Communication

WORK3 WORK3 WORK3 WORK3 Redundant
computation

Adjacent Communication

El
ap

se
 ti

m
e

Point: Increase parallelizable time and
decrease communication time.

Problems in parallelization
 The ratio of parallelizable part in an elapse time on

1CPU sequential job is conclusive（Amdahl’ law）.
 When we parallelize a software code, the data

communication between nodes must occur. If the
number of nodes increases, the communication time
between nodes costs more than the computational
time.(In the case of classical MD simulation, this is a
crucial problem.)

Amdahl’s Law

core

1

N
P t

t
≡α

core
max

1max

)1(

11)(
core

N
PPt

t
N

P

+−
=

×=α

Speed up ratio
Elapse time of one job on 1 core

Elapse time of one job on N core

P: parallelizable time in a sequential job

Upper bound of parallelizable ratio

For examples,

…

parallelizable（99 sec.）Not parallelizable（1 sec.）

{100 processors

1+0.99=1.99 sec.(almost 50 times faster)

…{1000 processors

1+0.099=1.099 sec.（almost 91 times
faster）

We feel that the merit of parallelization
does not increase even if the number of
processors increases more and more.

Even we use 100 processors, we cannot
obtain 100 times faster speed up.

Although we uses 1000
processors, the efficiency does
not become 100 times even!!!

We have to increase the parallelizable
part as possible.

We have to decrease the non
parallelizable part as possible.

Gustafson-Barsis’ law

snn)1(−+≤Speed-up ratio
n: the number of cores
s: the ratio of sequential computation(this part
cannot parallelize.)

In this law, the communication time
among nodes does not considered.

Indices of parallelization efficiency
 Strong scaling－The overall problem size (number of

atoms or electrons etc...) is fixed and the number of
processors is increased(based on Amdahl’s law).

 Weak scaling－The problem size per processor is fixed
and the overall problem size is increased with
increasing processors(based on Gustafson’s law). The
processing of one processor is not changed. The ideal
situation is the computation time should be constant
even if the increase of the number of processors. If the
computation time increases, we can see the non
parallel part remains, and if the adjacent
communication time increases, the method of the
communication has a problem.

Reference:
https://www.slideshare.net/RCCSRENKEI/ss-232004088/1
https://www.r-ccs.riken.jp/library/event/tokuronB_2020.html

https://www.slideshare.net/RCCSRENKEI/ss-232004088/1
https://www.r-ccs.riken.jp/library/event/tokuronB_2020.html

Example of Amdahl’s law(1)

Ordinary calculations using PC cluster

Caution! The communication time is not included.

Example of Amdahl’s law(2)

Calculations using high-end PC cluster or supercomputers

Example of Amdahl’s law(3)

Fugaku: 7,299,072 cores Calculations using high-end supercomputers

Example of Amdahl’s law(4)

K computer: 705,024 cores Summit: 2,414,592 cores
Sunway TaihuLight: 10,649,600 cores

Sp
ee

d
up

 ra
ti

o
α

p

Number of cores

Calculations using top class supercomputers in the world

Fugaku: 7,299,072 cores

Even if you are just a user,
 you need to be aware of the parallelization efficiency

of the software you use because you must effectively
use machine time(machine point, or cost(usage fee))
you can use.

 you need to understand the characteristics of the
computer and make efforts to increase the calculation
efficiency.

 you need to choose the best compile options to make
executable files.

 you need to choose the best parameters for the best
performance of the software to obtain the best
scientific results.

In DFT calculations, Ecut, k-point sampling,…
Fundamentally a model size,…

For Intel compiler, -xHost, -axCORE-AVX2,…

Parallel programming languages
 MPI(message passing interface)

 The most versatile method.
 Both core-to-core and node-to-node communication can

be handled.
 The programming may not be easy.

 OpenMP
 Only core-to-core communication.
 The programming may be easier than that of MPI.

 PVM
 HPF(High Performance Fortran)｝Now, these are seldom used.

(within non-complex case)

Example of parallelization with MPI
program main
include (mpif.h)

…
call MPI_INIT(IERR)
call MPI_COMM_SIZE(MPI_COMM_WORLD,NPROCS,IERR)
call MPI_COMM_RANK(MPI_COMM_WORLD,MYRANK,IERR)

…
call para_range(1, n, nprocs, myrank, ista, iend)
do i=ista, iend

…
a(i)=a(i)+value

enddo
call MPI_ALLREDUCE(a,a1,n_element,

& MPI_DOUBLE_PRECISION,
& MPI_SUM, MPI_COMM_WORLD, IERR)
…

call MPI_FINALIZE(IERR)
…

end

ista, iend are the first array
numbers allocated to each
processor.

Sum up all elements of the array a()
for all processors and distributed it
for all processors (all processors have
the same value of a()).

Each processor has only allocated elements of
the array a() .

It is necessary to rewrite so as to calculate only the part
allocated to each node and to communicate the data.

Execution: mpirun (or mpiexec) –np 4(# of parallel) ./a.out

Example of parallelization with OpenMP
program main
implicit none
integer omp_get_thread_num,I
double precision z(100), a, x(100), y
do i= 1, 100

z(i) = 0.0
x(i) = 2.0

end do
a = 4.0
y = 1.0
print *, “Welcome to the parallel world”
!$omp parallel
print *, “Excuted on”, omp_get_thread_num()
call daxpy(z, a, x, y)
!$omp end parallel
end program main

subroutine daxpy(z, a, x, y)
integer I
double precision z(100), a, x(100), y
!$omp parallel do
do i = 1, 100

z(i) = a * x (i) + y
enddo
return
end

Directive of the start of parallel processing

Do parallel of just below do loop

Directive of the end of parallel processing

For simple parallelization, we only need to insert
directives, so if we compile without parallelization
options the directives are commented out, so
basically we do not need to change the original
code.

Execution: We do not use a special command.
Set environmental value
“OMP_NUM_THREADS=4” (# of parallel)

The difference between MPI and
OpenMP
• OpenMP can be parallelizable only for cores which

share the memory. We cannot make a large-scale
parallelization code by using OpenMP only.

• The typical software codes which correspond to the
large-scale parallelization are tuned by using MPI for
its main part.

• The role of OpenMP is to assist the speed up of the
code which is parallelized by using MPI.

• Even if you do not develop the software code, you have
to know the details of the code in order to get
maximum performance.

The other environments to develop
parallel computing codes using GPU
 CUFFT, CUBLAS,…

 Only call libraries to accelerate specific parts. The other parts
do not be accelerated.

 OpenACC
 a programming standard for parallel computing developed by

Cray, CAPS, NVIDIA and PGI, designed to simplify parallel
programming of heterogenious CPU/GPU system.

 Very similar with OpenMP. In near future, OpenMP and
OpenACC may be merged.

 Fortran and C are supported.
 CUDA

 a parallel computing platform and programming model
created by NVIDIA and implemented by the graphics
processing units (GPUs) that they produce. （only PGI Fortran
can used.））

easy

hard

OpenACC(Open Accelerator)
program picalc

implicit none
integer, parameter :: n=1000000
integer :: i
real(kind=8) :: t, pi
pi = 0.0

do i=0, n-1
t = (i+0.5)/n
pi = pi + 4.0/(1.0 + t*t)

end do

print *, 'pi=', pi/n
end program picalc

As the development
environment, the best results
can be obtained by improving
according to the message issued
by the compiler.

http://www.nvidia.co.jp/object/openacc-gpu-directives-jp.html
http://www.cms-initiative.jp/ja/events/2014-haishin
http://www.r-ccs.riken.jp/library/event/tokuronB_180406.html
(The 14th lecture given by Dr. A. Naruse is useful.)
https://www.r-ccs.riken.jp/library/event/tokuronB_2020.html
(The 11th lecture given by Dr. A. Naruse is useful.)

!$acc parallel loop

!$acc end parallel loop

http://www.nvidia.co.jp/object/openacc-gpu-directives-jp.html
http://www.cms-initiative.jp/ja/events/2014-haishin
http://www.r-ccs.riken.jp/library/event/tokuronB_180406.html
https://www.r-ccs.riken.jp/library/event/tokuronB_2020.html

The cutting-edge techniques
 Avoid memory wall problem(cache control)

 Computing power>data transfer from memory to
computing unit(CPU)→reuse the data on caches

 Pipeline processing
 Continuous access in do loop
 loop unrolling
 Divide data into blocks
 Use the highly-optimized libraries
 …

Please see these sites;
(only Japanese)

We have to know details of
hardware to make highly
optimized software codes.

https://www.r-ccs.riken.jp/library/event/tokuronB_2020.html
https://www.r-ccs.riken.jp/library/event/tokuronA_2019.html

https://www.r-ccs.riken.jp/library/event/tokuronB_2020.html
https://www.r-ccs.riken.jp/library/event/tokuronA_2019.html

Memory wall problem

30

Old computer

Memory

CPU
Computation
performance
(number of
clocks) was slow
（~10MHz)

The memory can
not be accessed
until a certain
time passes

Sending data from memory to the
CPU was slow, and the computation
speed was also slow, so it was not the
problem at “data transfer speed ≈
calculated speed”.

Today’s computer

Memory

CPU
The computation
performance
becomes extremely
fast （~a few GHz）

The fact that
memory cannot be
accessed only for a
fixed time does not
change much.

Sending data from the memory to the CPU
is slow, but since the computing speed has
become extremely fast, the CPU is waiting
for a long time because of “the transfer
speed << compute speed” (supplement with
cache etc…).

Today’s computer

メモリ

CPU

Once the data is sent from the memory to
the CPU, the code is programmed to reuse
it as much as possible and reduce the
number of calls to the memory as much as
possible. Data transfer between the
memory and the register or cache is fast,
but the capacity is small.

register

cache

Main memory

HDD

~ KB

O(10 ns)

O(100 ns)

O(10 ms)

O(ns)
10KB~10MB

GB~100GB

100GB~TB

High speed

Large
capacity

The time required for data transfer from
the main memory to the CPU is 100
times longer than access to the data on
the register.

L2 cache

L1

Main memory

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

．．．

L2 cache

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

L1

Co
re

．．．

Main memory

If you do not understand and develop a
complex CPU configuration, the

performance will not be achieved.

31

Memory wall problem
Important!: Data transfer is the
most expensive at all levels.

High performance Python
 In place of Fortran and C / C ++, which have been used in

scientific computing in the past, HPC software development
has been advanced in the USA by using Python.

 Python has overwhelming code readability compared to
Fortran and C / C ++.

→It is more likely that the maintenance of the code will be
continued without reading by experts.
 We do not need to write everything in Python. If we know

that another language is faster than Python for a certain part,
we should use the part in the original. We combine Python
and the other language and improve the ease of
maintenance.（It is said that Python is a "glue language"
because it is a language that "sticks" programs in multiple
languages.）

Analysis of the computational time in
order-N tight-binding method

A electronic
structure part
occupies 97.6%
of total elapse
time in a
sequential job.

High
parallelizability
is expected.

Geshi et al.(2003)

Parallelization by means of MPI
We used MPI_ALLREDUCE and MPI_BCAST to

communicate data.（Although this is quite simple and
includes useless data communication, the speed-up ratio
was good.)

We divided do-loop as outer as possible.
 In this method, we can make all matrix elements as long as

we determine the atomic positions. These data determined
from 1 MD step are stored in CPU memory of all node.
Although almost all data are useless, we do not need to
communicate the data among nodes and there is no loss of
data communication.

Elapse time of each part as a
function of the number of CPU

SGI Origin 3800Geshi et al.(2003)

Elapse time as a function of the
number of CPU

M. Geshi et al, J. Phys. Soc. Jpn. 72 ,2880 (2003).

Parallelization ratio

P=0.988

M. Geshi et al, J. Phys. Soc. Jpn. 72 ,2880 (2003).

This is not enough today. To achieve the best
performance, it is necessary to increase the
parallelization efficiency to the limit.

Today’s supercomputers

Classes of parallel computers
 Multicore computing

 a processor that includes multiple execution units ("cores") on
the same chip.

 Symmetric multiprocessing
 a computer system with multiple identical processors that

share memory and connect via a bus.
 Distributed computing

 a distributed memory computer system in which the processing
elements are connected by a network.(Cluster computing,
Massive parallel processing, Grid computing)

 Specialized parallel computers
 Within parallel computing, there are specialized parallel

devices that remain niche areas of interest.
(GPGPU,Application-specific integrated circuits, Vector
processors)

From http://en.wikipedia.org/wiki/Parallel_computing

The latest top 500 supercomputer list
(2019.11)

40

Japan

GPU

GPU

GPU

GPU

GPU

Intel XeonPhi

IBM製

Cray製

By the way, Oakforest-PACS is 15,
and TSUBAME3.0 is 23. In total,
14 Japanese supercomputers are
in the top 100.

China

China

USA

USA

USA

USA

USA

(This architecture
was gone.)

https://www.top500.org/lists/top500/2019/11/

Intel XeonPhi

https://www.top500.org/lists/top500/2019/11/

The latest top 500 supercomputer list
(2020.6)(Latest)

41

Japan

GPU

GPU

GPU

GPU

GPU

IBM製

Dell製

By the way, AI Bridging Cloud
Infrastructure (AIBC)is 12,
Oakforest-PACS is 18, and
TSUBAME3.0 is 27. In total, 14
Japanese supercomputers are in
the top 100.

China

China

USA

USA

USA

USA GPU

GPU

https://www.top500.org/lists/top500/2020/06/

https://www.top500.org/lists/top500/2020/06/

LINPACK
 A software library for performing numerical linear

algebra on digital computers.
 It is used for the performance assessment of

supercomputers. In practice, High-Performance
Linpack(HPL) is used.

 It makes use of the BLAS libraries for performing basic
vector and matrix operations.

 The benchmark used in the LINPACK Benchmark is to
solve a dense system of linear equations.

This benchmark shows nothing more than
one side of performance of supercomputers.

HPC Challenge
The HPC Challenge benchmark consists of basically 7 tests:
 HPL - the Linpack TPP benchmark which measures the floating point rate of

execution for solving a linear system of equations.
 DGEMM - measures the floating point rate of execution of double precision

real matrix-matrix multiplication.
 STREAM - a simple synthetic benchmark program that measures sustainable

memory bandwidth (in GB/s) and the corresponding computation rate for
simple vector kernel.

 PTRANS (parallel matrix transpose) - exercises the communications where
pairs of processors communicate with each other simultaneously. It is a useful
test of the total communications capacity of the network.

 RandomAccess - measures the rate of integer random updates of memory
(GUPS)

 FFT - measures the floating point rate of execution of double precision
complex one-dimensional Discrete Fourier Transform (DFT).

 Communication bandwidth and latency - a set of tests to measure latency and
bandwidth of a number of simultaneous communication patterns; based
on b_eff (effective bandwidth benchmark).

http://www.hpcchallenge.org/

HPCG Benchmark(From 2014)
The High Performance Conjugate Gradients (HPCG) Benchmark project is an effort to create
a new metric for ranking HPC systems. HPCG is intended as a complement to the High
Performance LINPACK (HPL) benchmark, currently used to rank the TOP500 computing
systems. The computational and data access patterns of HPL are still representative of some
important scalable applications, but not all. HPCG is designed to exercise computational and
data access patterns that more closely match a different and broad set of important
applications, and to give incentive to computer system designers to invest in capabilities that
will have impact on the collective performance of these applications.

HPCG is a complete, stand-alone code that measures the performance of basic operations in
a unified code:

•Sparse matrix-vector multiplication.
•Vector updates.
•Global dot products.
•Local symmetric Gauss-Seidel smoother.
•Sparse triangular solve (as part of the Gauss-Seidel smoother).
•Driven by multigrid preconditioned conjugate gradient algorithm that exercises the key kernels
on a nested set of coarse grids.
•Reference implementation is written in C++ with MPI and OpenMP support.

https://www.top500.org/lists/hpcg/2017/11/

https://www.top500.org/lists/hpcg/2017/11/

HPCG ranking(2019.6)

45

Japan

Japan

China

USA

USA

USA

USA

Japan

https://www.top500.org/lists/hpcg/2019/06/

GPU

GPU

GPU

GPU

GPU

Intel XeonPhi
Intel XeonPhi

Intel XeonPhi

Intel XeonPhi

https://www.top500.org/lists/hpcg/2019/06/

HPCG ranking(2019.11)

46

Japan

Japan

China

USA

USA

USA

USA

https://www.top500.org/lists/hpcg/2019/11/

GPU

GPU

GPU

GPU

Intel XeonPhi

Intel XeonPhi

Intel XeonPhi
Intel XeonPhi
Intel XeonPhi

https://www.top500.org/lists/hpcg/2019/11/

HPCG ranking(2020.6)(Latest)

47

Japan

Japan

China

USA

USA

USA

USA

USA

https://www.top500.org/lists/hpcg/06/

GPU

GPU

GPU

GPU

Intel XeonPhi

Intel XeonPhi

GPU

GPU

https://www.top500.org/lists/hpcg/06/

Green500(省エネスパコンリスト)
 The purpose of the Green500 is to provide a ranking of the

most energy-efficient supercomputers in the world. For
decades, the notion of "performance" has been
synonymous with "speed" (as measured in FLOPS). This
particular focus has led to the emergence of
supercomputers that consume egregious amounts of
electrical power and produce so much heat that
extravagant cooling facilities must be constructed to ensure
proper operation. In addition, the emphasis on speed as the
ultimate metric has caused other metrics such as reliability,
availability, and usability to be largely ignored. As a result,
there has been an extraordinary increase in the total cost of
ownership (TCO) of a supercomputer.

https://www.top500.org/lists/green500/2013/06/

https://www.top500.org/lists/green500/2013/06/

Green 500(2019.11)

49

This list fluctuates
violently every time.
That is why
emphasis is placed
on the development
of this technology.

Japan

Japan

Japan

USA

USA

USA

USAGPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

These machines balance
energy saving and
computing performance.Japan

The prototype of Fugaku.

https://www.top500.org/lists/green500/2019/11/

https://www.top500.org/lists/green500/2019/11/

Green 500(2020.6)(Latest)

50

This list fluctuates
violently every time.
That is why
emphasis is placed
on the development
of this technology.

Japan

Japan

USA

USA

GPU

GPU

GPU

GPU

GPU

GPU These machines balance
energy saving and
computing performance.

Japan

The prototype of Fugaku.

https://www.top500.org/lists/green500/2020/06/

Japan

USA

https://www.top500.org/lists/green500/2020/06/

K computer was working on 24h/365days
 K computer was active for public use on 24hours/365 days

for general users.
 Different from K-computer, almost all the top class

machines of the top500 ranking are for closed users and are
used for limited purposes.

 The several rankings showed that K computer was
almighty.

 Users could optimize their code for K computer easier
than for the other ones(in the sense that it did not use a
special architecture like GPU).

 Fugaku will be operated in the same way as K-
computer and the latest ranking shows that Fugaku is
almighty.

Future direction of large-scale
computing

From the above rankings
 From now on, both performance and energy-saving are

important (half of the top 10 machine in the top500 make
energy saving and computing performance highly
compatible).

 The trend of many-core system with not so high frequency
CPU is still going on. →Fugaku has 48 cores.

 Or many supercomputers have GPU and realize energy
saving.

 As GPU is prominent in the field of AI and machine learning,
this architecture will continue to be adopted in the future.

 However, I do not know whether supercomputers made up
of GPU are effective in all fields or not.

 Probably, many supercomputers designed for data analysis
and AI will appear after now.

However,…
 Effective performances measured by LINPACK or HPCG

benchmarks are not necessarily accordance with the
performance of our software codes. Usually, we spend so
much effort to get better performance on supercomputers
than typical PC clusters.
→Fugaku, will be constructed for getting better performance
for scientific application than benchmark programs (Co-
design). (However, it may be the national mission to get the
first prize of top 500 for taxpayers.→Achieved)

 The effort goes beyond knowledge and techniques of
physicists, chemist, biologists,… We need those of computer
scientists and numerical mathematicians and need to
collaborate them.

 Fugaku will be also a computer for general purpose. It may be
inferior to a dedicated machine.(cf. Anton (supercomputer for
performing classical MD) is 100~1000 faster than normal
supercomputers.)

Future direction1
 The tendency of architecture is multi cores or many

cores (including SIMD,GPU, …).
 It is not easy to use all cores effectively.
(As personal opinion, I think that I do not have to worry about using all the cores and it is

enough to get the best efficiency to obtain the calculation result.)

 Is it reasonable and proper to devote many researchers’
effort to develop parallel efficiency? (very serious
problem!!!)→ It should be better than before due to
the accumulation of K computer.

 For DFT calculations, it may be difficult to speed-up
the software by using GPU without breakthrough.

 We have to perform feasibility studies continuously to
follow a leading-edge architecture.

Future direction2
 The United States develops both architectures and

programming language frameworks. We should contribute
those.

 It is too much hard-pressed for physicists and chemists to
cover computer science or numerical analysis.
→it is needed to establish a system to promote to work
together with computational scientists and computer
scientists or experts of numerical analysis.
→This is currently under development.
(Computational Materials Science Forum is established.
https://cms-forum.jp/)

 Still now, the guarantee of accuracy of calculation is
inadequacy. There is no standard for summation of data
from cores (threads) on MPI or OpenMP,… We must treat it
carefully, otherwise our calculation may become meaningless.

https://cms-forum.jp/

Future direction3
 Today’s amassed skills through K computer can be used

during the next 10 years. (In Japan, Fugaku project, and the
next project)

 However, the development of supercomputer must be stop
in near future.(Prof. Hiraki said it was 2029. The reason is
the necessity of huge electric power, failure of Moors’ law,
etc…)

 We should consider a new idea to get high performance of
our own calculations for both software and hardware as
soon as possible. We may undergo a paradigm shift before
2029.

 For the time being, data transfer will continue to be the
most costly at all levels.

 The research on quantum computers is also advancing, and
that will be a focus in the future.

MateriApps

This portal site provides the information of applications that are used in materials
science. You can find your desired application. “MateriApps LIVE” gives you an
environment to perform open-source software codes without any installation
process.

Finally,
 We should advance the development of human resources

to be able to use supercomputers and/or HPC machines
effectively.

 The relation between the ranking of top500 and the
software code we use is not necessarily clear. We need to
have the knowledge of the architecture of the
supercomputers and/or the HPC machines if we’d like to
maximize the performance of our software codes.

 We should cultivate people who can develop the software
code.

 We should cultivate people who can effectively use
scientific software codes to progress the researches.
（CMD-WS, distance learning etc…)

• These books are for developers.
• Integrates techniques for development on massively parallel computers

such as supercomputers.
• Lecture videos and texts are available on the following site(Japanese only).

https://www.r-ccs.riken.jp/library/event/tokuronA_2019.html

Related texts

60

https://www.r-ccs.riken.jp/library/event/tokuronB_2020.html

https://www.r-ccs.riken.jp/library/event/tokuronA_2019.html
https://www.r-ccs.riken.jp/library/event/tokuronB_2020.html

	Introduction to large-scale computing�大規模計算序論
	Contents
	Necessity of large-scale computing
	Problems raised by large-scale computing
	When we perform large-scale computing,…
	Methods for large-scale computing
	Concept of Flynn’s taxonomy
	Vectorization
	Vector processing
	Order-N
	Parallelization
	Concept of parallelization
	Problems in parallelization
	Amdahl’s Law
	For examples,
	Gustafson-Barsis’ law
	Indices of parallelization efficiency
	Example of Amdahl’s law(1)
	Example of Amdahl’s law(2)
	Example of Amdahl’s law(3)
	Example of Amdahl’s law(4)
	Even if you are just a user,
	Parallel programming languages
	Example of parallelization with MPI
	Example of parallelization with OpenMP
	The difference between MPI and OpenMP
	The other environments to develop parallel computing codes using GPU
	OpenACC(Open Accelerator)
	The cutting-edge techniques
	Memory wall problem
	スライド番号 31
	High performance Python
	Analysis of the computational time in order-N tight-binding method
	Parallelization by means of MPI
	Elapse time of each part as a function of the number of CPU
	Elapse time as a function of the number of CPU
	Parallelization ratio
	Today’s supercomputers
	Classes of parallel computers
	The latest top 500 supercomputer list (2019.11)
	The latest top 500 supercomputer list (2020.6)(Latest)
	LINPACK
	HPC Challenge
	HPCG Benchmark(From 2014)
	HPCG ranking(2019.6)
	HPCG ranking(2019.11)
	HPCG ranking(2020.6)(Latest)
	Green500(省エネスパコンリスト)
	Green 500(2019.11)
	Green 500(2020.6)(Latest)
	K computer was working on 24h/365days
	Future direction of large-scale computing
	From the above rankings
	However,…
	Future direction1
	Future direction2
	Future direction3
	MateriApps
	Finally,
	Related texts

