

Practical Aspects of TDDFT Calculations

partly as an introduction to the afternoon tutorial session using SALMON: Scalable Ab Initio Light-Matter simulator for Optics and Nano-science

Kazuhiro Yabana

Center for Computational Sciences University of Tsukuba

Classifications of TDDFT calculations for optical responses that can be done in current SALMON

	Isolated Systems (Molecules, Nano-particles)	Periodic Systems (Crystalline solids)	Light propagation in bulk materials (Maxwell + TDDFT)
Weak fields (Linear response)	Polarizability $lpha(\omega)$	Dielectric function $\epsilon(\omega)$	1D light
Strong fields (Nonlinear dynamics)	Excitation energy Atomic motion	Excitation energy Carrier density Atomic motion	propagation E(x,t), J(x,t)

To be developed:

spin degrees (at present, only spin-saturated system: LSDA, spin-orbit,...) 1D, 2D systems

Electromagnetic field analyses with various options of electron dynamics

Basic features of light-matter interactions

- Interaction dominates between light electric field and electrons.
- For ordinary (weak) light, one may use perturbation theory in quantum mechanics.
- There are two spatial scales and single time scale → Dipole approximation

Linear optical response of molecule is characterized by polarizability in dipole approximation

Relation to frequency-dependent polarizability (polarizability for fixed-frequency field)

$$\alpha_{\mu\nu}(\omega) = \frac{\int dt e^{i\omega t} p_{\mu}(t)}{\int dt e^{i\omega t} E_{\nu}(t)}$$

Sinusoidal external field (forced oscillator)

Polarization and polarizability

Impulsive external field (Damped oscillation)

A classical spring-mass model: Compare two descriptions

A classical spring-mass model: Photoabsorption cross section

$$F_{\text{ext}}(t) = -eE(t)$$

$$p(t) = -ex(t) = \int dt' \alpha(t - t')E(t') \xrightarrow{k, g} \xrightarrow{E(t)} x$$

Work done by light electric field = Energy absorbed by the spring

$$W = \int dt \dot{x}(t) F_{\text{ext}}(t) = \int dt \dot{p}(t) E(t) = \frac{1}{\pi} \int_0^\infty d\omega \omega \text{Im}\alpha(\omega) |E(\omega)|^2$$

Photoabsorption cross section is given by imaginary part of the polarizability

$$\sigma(\omega) = \frac{4\pi\omega}{c} \mathrm{Im}\alpha(\omega)$$

A general (accurate) formula of polarizability for molecules

Electronic description for a molecule

Hamiltonian
$$H = \sum_{i} \left\{ -\frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \sum_{a} \frac{Z_{a}e^{2}}{|\vec{r_{i}} - \vec{R}_{a}|} \right\} + \sum_{i < j} \frac{e^{2}}{|\vec{r_{i}} - \vec{r_{j}}|}$$
Schroedinger eq.
$$H\Phi_{n} = E_{n}\Phi_{n}$$
Dipole operator
$$D = \sum_{i} z_{i}$$
Polarizability $\alpha(\omega) = \frac{e^{2}}{m} \sum_{n} f_{n0} \frac{1}{-\omega^{2} - i\gamma\omega + \left(\frac{E_{n} - E_{n}}{\hbar}\right)^{2}}$

Oscillator strength $f_{n0} = \frac{2m}{\hbar^2} \left(E_n - E_0 \right) |\langle \Phi_n | D | \Phi_0 \rangle|^2$

Each excited state contributes as a classical oscillator.

9

Polarizability for molecules in TDDFT

TDDFT provides time-dependent density for a given external potential

 $V_{\text{ext}}(\vec{r},t) \implies \rho(\vec{r},t)$

Calculation of Polarizability in TDDFT Time-domain method

Computational procedure

Prepare ground state	$h_{KS}\phi_i(\vec{r}) = \epsilon_i\phi_i(\vec{r})$	
Apply impulsive external potential	$V_{ext}(\vec{r,t}) = I\delta(t)z$	
Orbitals immediately after the impulse	$\psi_i(\vec{r},t=0_+)=e^{iIz/\hbar}\phi_i(\vec{r}) \blacklozenge$	Newton mechanics $\dot{x}(t=0_+) = \frac{I}{m}$
Calculate polarization	$p(t) = -e \int d\vec{r} z \rho(\vec{r},t)$	
Fourier transformation Frequency-dependent polarizability	$\alpha(\omega) = \frac{1}{I} \int dt e^{i\omega t} p(t)$	12

Photoabsorption cross section of typical molecules

K. Yabana et.al, Chap.4, Charged Particle and Photon Interactions with Matter. CRC Press. 2010.

Surface plamons (Mie plasmon): Collective excitation in metallic cluster

K. Yabana, G.F. Bertsch, Phys. Rev. B54, 4484 (1996).

Electron density change from the ground state

Assume icosahedral geometry

Thomas-Reiche-Kuhn (TRK) sum rule

Sum of oscillator strength over all excited states is equal to the number of electrons.

$$\int_{0}^{\infty} d\omega \sigma(\omega) = \frac{4\pi}{c} \int_{0}^{\infty} d\omega \omega \operatorname{Im} \alpha(\omega) = \frac{2\pi^{2}e^{2}}{mc} N_{e}$$
Number of electrons

TRK sum rule is related to the initial velocity after impulsive excitation

$$\alpha(t) = \int \frac{dt}{2\pi} e^{-i\omega t} \alpha(\omega) \qquad \left. \frac{d\alpha(t)}{dt} \right|_{t=0} = \frac{1}{\pi} \int_0^\infty d\omega \omega \operatorname{Im}\alpha(\omega)$$

Velocity immediately after the kick

- D(t)

ť

$$\frac{dD(t)}{dt} = N_e \frac{I}{m}$$

Computational Schemes for linear response calculations

Orbital representation

- Real space grid with pseudpotential
- Plane wave with pseudopotential
- Basis functions referring to atomic positions

Solve linear response problem

- Time domain method solve TDKS equation in real time
- Frequency domain method (Sternheimer method) linear algebraic equation
- Eigenvalue method an option of quantum chemistry methods

Merit of real-space + real-time

- Easy to parallelize by space division (real space)
- Good for excitations involving huge number of particle-hole excitations (real time)
- Only choice for nonlinear dynamics (real time)

SALMON adopts Real-space grid + norm conserving pseudopotential

19

Classifications of TDDFT calculations for optical responses that can be done in current SALMON

	Isolated Systems (Molecules, Nano-particles)	Periodic Systems (Crystalline solids)	Light propagation in bulk materials (Maxwell + TDDFT)
Weak fields Linear response)	Polarizability $\alpha(\omega)$	Dielectric function $\epsilon(\omega)$	1D light
Strong fields Nonlinear dynamics)	Excitation energy Atomic motion	Excitation energy Carrier density Atomic motion	propagation E(x,t), J(x,t)

21

Coulomb explosion of molecules under intense and ultrashort laser pulse

TDDFT School and SALMON Hands-on Seminar Center for Computational Sciences, University of Tsukuba Nov. 11-12, 2018

Practical Aspects of TDDFT Calculations

partly as an introduction to the afternoon tutorial session using SALMON: Scalable Ab Initio Light-Matter simulator for Optics and Nano-science

Kazuhiro Yabana

Center for Computational Sciences University of Tsukuba

Classifications of TDDFT calculations for optical responses that can be done in current SALMON

	Isolated Systems (Molecules, Nano-particles)	Periodic Systems (Crystalline solids)	Light propagation in bulk materials (Maxwell + TDDFT)
Weak fields (Linear response)	Polarizability α(ω)	Dielectric function $\epsilon(\omega)$	1D light
Strong fields (Nonlinear dynamics)	Excitation energy Atomic motion	Excitation energy Carrier density Atomic motion	propagation E(x,t), J(x,t)
		Atomic motion	
			33

Physical quantities are invariant under the transformation.

$$\begin{split} \rho(\vec{r},t), \vec{j}(\vec{r},t), \vec{E}(\vec{r},t), \vec{B}(\vec{r},t) \\ \rho(\vec{r},t) &= |\psi(\vec{r},t)|^2 \\ \vec{j}(\vec{r},t) &= \operatorname{Re}\left\{\psi(\vec{r},t)\frac{1}{m}\left(-i\hbar\vec{\nabla} + \frac{e}{c}\vec{A}(\vec{r},t)\right)\psi(\vec{r},t) \right. \\ \vec{E}(\vec{r},t) &= -\vec{\nabla}\phi(\vec{r},t) - \frac{1}{c}\frac{\partial\vec{A}(\vec{r},t)}{\partial t} \\ \vec{B}(\vec{r},t) &= \vec{\nabla} \times \vec{A}(\vec{r},t) \end{split}$$

Further gauge transformation is possible: "length gauge" in k-space

40

Time-dependent Kohn-Sham equation for Bloch orbitals (implemented in SALMON)

$$i\hbar\frac{\partial}{\partial t}u_{n\vec{k}}(\vec{r},t) = \left\{\frac{1}{2m}\left(-i\hbar\vec{\nabla} + \hbar\vec{k} + \frac{e}{c}\vec{A}(t)\right)^2 - \sum_a \frac{Z_a e^2}{|\vec{r} - \vec{R}_a|} + \int d\vec{r}' \frac{e^2}{|\vec{r} - \vec{r}'|}\rho(\vec{r}',t) + \mu_{xc}[\rho(\vec{r},t)]\right\} u_{n\vec{k}}(\vec{r},t)$$
$$u_{n\vec{k}}(\vec{r} + \vec{a},t) = u_{n\vec{k}}(\vec{r},t) \qquad \vec{E}(t) = -\frac{1}{c}\frac{d\vec{A}(t)}{dt}$$

- Calculation of dielectric function in real time

- Electron dynamics in crystalline solids under intense and ultrashort light pulse

Electric field, Electric current density, Polarization density, Conductivity, Dielectric function

E(t)

Current density from Microscopic to Macroscopic

$$J(t) = \frac{1}{V} \int_{V} d\vec{r} j(\vec{r}, t)$$

Electric field induces electric current in a unit cell of solid c^{t}

$$J(t) = \int^{t} dt' \underline{\sigma(t - t')} E(t') \frac{}{\text{conductivity}}$$

Polarization is given as time-integral of the current

$$P(t) = \int^t dt' J(t')$$

Dielectric function

$$D(t) = E(t) + 4\pi P(t) = \int^{t} dt' \underline{\epsilon(t - t')} E(t')$$
Dielectric function

+

$$j(\vec{r},t)$$

Classical spring-mass model for dielectric function

m, -e

Impulsive force

k, g

Sinusoidal field

43

Newtonian dynamics

$$\begin{split} m\ddot{x} + kx &= I\delta(t) \\ x(0) &= 0 \quad \dot{x}(0) = \frac{I}{m} \\ x(t) &= \theta(t) \frac{I}{m\omega_0} \sin \omega_0 t \quad \omega_0^2 = \frac{k}{m} \end{split}$$

Electric current

 $J(t) = -en\dot{x}(t) \qquad n \quad \begin{array}{l} {\rm oscillator} \\ {\rm density} \end{array}$

Conductivity and dielectric function

$$\sigma(t) = \theta(t) \frac{e^2 n}{m} \cos \omega_0 t$$
$$\epsilon(t) = \delta(t) + \theta(t) \frac{4\pi e^2 n}{m\omega_0} \sin \omega_0 t$$

Newtonian dynamics

E(t)

r

$$m\ddot{x} + kx = -eE_0e^{-i\omega t}$$

$$x(t) = -\frac{e}{m} \frac{1}{-\omega^2 + \omega_0^2} E_0 e^{-i\omega t}$$

Polarization

$$P(t) = -enx(t) = \frac{e^2n}{m} \frac{1}{-\omega^2 + \omega_0^2} E(t)$$

Dielectric function

$$D = E + 4\pi P = \epsilon(\omega)E$$

$$\Rightarrow \quad \epsilon(\omega) = 1 + \frac{4\pi e^2 n}{m} \frac{1}{-\omega^2 + \omega_0^2}$$
44

Calculation of Dielectric function in TDDFT Time-domain method

Time-dependent Kohn-Sham equation for Bloch orbitals (implemented in SALMON)

$$i\hbar\frac{\partial}{\partial t}u_{n\vec{k}}(\vec{r},t) = \left\{ \frac{1}{2m} \left(-i\hbar\vec{\nabla} + \hbar\vec{k} + \frac{e}{c}\vec{A}(t) \right)^2 - \sum_a \frac{Z_a e^2}{|\vec{r} - \vec{R}_a|} + \int d\vec{r}' \frac{e^2}{|\vec{r} - \vec{r}'|} \rho(\vec{r}',t) + \mu_{xc}[\rho(\vec{r},t)] \right\} u_{n\vec{k}}(\vec{r},t)$$

$$u_{n\vec{k}}(\vec{r} + \vec{a},t) = u_{n\vec{k}}(\vec{r},t) \qquad \vec{E}(t) = -\frac{1}{c} \frac{d\vec{A}(t)}{dt}$$

$$\frac{Computational procedure}{Prepare ground state} \qquad h_{KS}\phi_i(\vec{r}) = \epsilon_i\phi_i(\vec{r})$$

$$Apply impulsive external potential = shift of k-value \qquad E(t) = k\delta(t) \qquad A(t) = -ck\theta(t)$$

$$Calculate electric current \qquad J(t) = \frac{1}{V} \int d\vec{r}j(\vec{r},t) \rightarrow k\sigma(t)$$

$$Fourier transformation Conductivity and dielectric function \qquad \sigma(\omega), \quad \epsilon(\omega) = 1 + \frac{4\pi i \sigma(\omega)}{\omega}$$

Classifications of TDDFT calculations for optical responses that can be done in current SALMON

	Isolated Systems (Molecules, Nano-particles)	Periodic Systems (Crystalline solids)	Light propagation in bulk materials (Maxwell + TDDFT)
Weak fields (Linear response)	Polarizability α(ω)	Dielectric function $\epsilon(\omega)$	1D light
Strong fields (Nonlinear dynamics)	Excitation energy Atomic motion	Excitation energy Carrier density Atomic motion	propagation E(x,t), J(x,t)

47

<section-header><section-header><section-header><section-header><figure><figure>

Classifications of TDDFT calculations for optical responses that can be done in current SALMON

	Isolated Systems (Molecules, Nano-particles)	Periodic Systems (Crystalline solids)	Light propagation in bulk materials (Maxwell + TDDFT)
Weak fields (Linear response)	Polarizability $lpha(\omega)$	Dielectric function $\epsilon(\omega)$	1D light
Strong fields (Nonlinear dynamics)	Excitation energy Atomic motion	Excitation energy Carrier density Atomic motion	propagation E(x,t), J(x,t)

"Calculations" of light-matter interaction

Macroscopic Electromagnetism (EM)

Light propagation description by Maxwell equations. Materials' properties comes into through constitutive relations (dielectric constant).

Quantum Mechanics (QM)

 $\frac{|\langle 0|x|j\rangle|}{(x+ix)^2}$

55

First-principles calculations for dielectric function. Perturbation theory in quantum mechanics.

$$abla \cdot oldsymbol{B} = 0$$

 $abla \times oldsymbol{E} + rac{\partial oldsymbol{B}}{\partial t} = \mathbf{0}$
 $abla \cdot oldsymbol{D} =
ho$
 $abla \cdot oldsymbol{D} =
ho$
 $abla \times oldsymbol{H} - rac{\partial oldsymbol{D}}{\partial t} = oldsymbol{j}$

$$D = \varepsilon E \qquad \varepsilon_r = 1 + \frac{2Ne^2}{\varepsilon_0 \hbar} \sum_j \frac{\omega_{j0}}{\omega_{j0}^2}$$

Constitutive relation connects two theories

Constitutive Relation bridges EM and QM

 $D(r,t) = E(r,t) + 4\pi P(r,t)$

Ordinary assumption: Local + Linear

 $P(r,t) = \int dt' \chi^{(1)}(t-t') E(r,t') \quad \longleftrightarrow \quad P(r,\omega) = \chi^{(1)}(\omega) E(r,\omega)$

General form (nonlocal, nonlinear)

$$\begin{split} P(r,t) &= P[E(r',t')] \\ &= \int dt' dr' \chi^{(1)}(r,r',t-t') E(r',t') \\ &+ \int dt' dt'' dr' dr'' \chi^{(2)}(r,r',r'',t-t',t-t'') E(r',t') E(r'',t'') + \cdots \end{split}$$

In recent optical sciences,

Nano-structure \longrightarrow nonlocal Intense laser pulse \rightarrow nonlinear Require unified approach of EM and QM.

Light propagation using dielectric constant

Incident pulse A/c Vacuum Si 0.015 $\lambda = 800$ nm, ε=1 ε**=16** $\hbar\omega = 1.55 \text{eV}$ (below direct gap) 0.01 0.005 potential [a.u.] **Wave equation** $\frac{\varepsilon(z)}{c^2}\frac{\partial^2}{\partial t^2}A(z,t) - \frac{\partial^2}{\partial z^2}A(z,t) = 0$ ector -0.005 -0.01 $\varepsilon(z) = \begin{cases} 16 & (Si) \\ 1 & (vacuum) \end{cases}$ -0.015 -0.02 z ímicro meteri [mm]

When light pulse is very strong, we cannot use dielectric function.

