

36th Computational Materials Design Workshop

Graduate School of Engineering Science, Osaka University February 21, 2020

Ternary metal alloy PdRuIr as an effective NO reduction catalyst from first principles analysis

Aspera, Susan Meñez Nakanishi Laboratory National Institute of Technology (KOSEN), Akashi College

Introduction: Types of Binary Alloys According to Miscibility

Applied Physics Letters

The valence band structure of Ag_xRh_{1-x} alloy nanoparticles

Anli Yang^{1,2}, Osami Sakata^{1,2,3,a)}, Kohei Kusada^{2,4}, Tomoe Yayama^{2,5}, Hideki Yoshikawa⁶, Takayoshi Ishimoto^{2,5}, Michihisa Koyama^{2,5,7}, Hirokazu Kobayashi^{2,4} and Hiroshi Kitagawa^{2,4,5,8}

+ VIEW AFFILIATIONS

a) Author to whom correspondence should be addressed. Electronic mail: SAKATA.Osami@nims.go.jp.

Appl. Phys. Lett. 105, 153109 (2014); http://dx.doi.org/10.1063/1.4896857 🗹

PREVIOUS ARTICLE | TABLE OF CONTENTS | NEXT ARTICLE >

Abstract Full Text References (32) Cited By (8) Data & Media Metrics Related

The valence band (VB) structures of face-centered-oubic Ag-Rh alloy nanoparticles (NPs), which are known to have excellent hydrogen-storage properties, were investigated using bulk-sensitive hard x-ray photoelectron spectroscopy. The observed VB spectra confiles of the Ag-Rh alloy NPs do not resemble simple linear combinations of the VB spectra of Ag and Rh NPs. The observed VB hybridization was qualitatively reproduced via a first-principles calculation. The electronic structure of the Ag _{0.5}Rh_{0.5} alloy NPs near the Fermi edge was strikingly similar to that of Pd NPs, whose superior hydrogen-storage properties are well known.

36th Computational Materials Design Workshop Graduate School of Engineering science, Osaka University February 21, 2020

qualitatively reproduced via a first-principles calculation. The electronic structure of the Ag _{0.5}Rh_{0.5} alloy NPs near the Fermi edge was strikingly similar to that of Pd NPs, whose superior hydrogen-storage properties are well known.

Views: 1,079 Citations: 2	More detail »
Article OPEN	
A Synthetic Pseudo-	Rh: NO _x Reduction
5	A
Activity and Electron	nic Structure of Pd-Ru
Activity and Electron	nic Structure of Pd-Ru
Activity and Electron Solid-solution Alloy	nic Structure of Pd–Ru Nanoparticles
Activity and Electron Solid-solution Alloy Katsutoshi Sato, Hiroyuki Tomonaga, Tomokazu	nic Structure of Pd–Ru Nanoparticles ^J Yamamoto, Syo Matsumura, Nor Diana Binti Zulkilli
Activity and Electron Solid-solution Alloy Katsutoshi Sato, Hiroyuki Tomonaga, Tomokazu Takayoshi Ishimoto, Michihisa Koyama 🖣, Kohe	nic Structure of Pd–Ru Nanoparticles ^J Yamamoto, Syo Matsumura, Nor Diana Binti Zulkifii i Kusada, Hiroshi Kitagawa [®] &
Activity and Electron Solid–solution Alloy Katsutoshi Sato, Hiroyuki Tomonaga, Tomokazu Takayoshi Ishimoto, Michihisa Koyama ^{Sa} , Kohe Katsutoshi Nagaoka ^{Sa}	nic Structure of Pd–Ru Nanoparticles J Yamamoto, Syo Matsumura, Nor Diana Binti Zulkifli, i Kusada, Hirokazu Kobayashi, Hiroshi Kitagawa 🖼 🗞
Activity and Electron Solid–solution Alloy Katsutoshi Sato, Hiroyuki Tomonaga, Tomokazu Takayoshi Ishimoto, Michihisa Koyama ^{SC} , Kohe Katsutoshi Nagaoka ^{SC} Scientific Reports 6 , Article number: 28265	nic Structure of Pd–Ru Nanoparticles u Yamamoto, Syo Matsumura, Nor Diana Binti Zulkifii i Kusada, Hirokazu Kobayashi, Hiroshi Kitagawa
Activity and Electron Solid-solution Alloy Katsutoshi Sato, Hiroyuki Tomonaga, Tomokazu Fakayoshi Ishimoto, Michihisa Koyama ^{SC} , Kohe Katsutoshi Nagaoka ^{SC} Scientific Reports 6 , Article number: 28265 (2016)	nic Structure of Pd–Ru Nanoparticles u Yamamoto, Syo Matsumura, Nor Diana Binti Zulkiffi i Kusada, Hirokazu Kobayashi, Hiroshi Kitagawa 🏽 🏖

elements is immiscible in the bulk state. Here, we report a Pd–Ru solidsolution-alloy nanoparticle (Pd_xRu_{1-x} NP) catalyst exhibiting better NO_x reduction activity than Rh. Theoretical calculations show that the

Three-way catalysis of gas exhaust system

K. Sato et. al. , Sci. Rep. - UK 6 (2016) 28265

NO reduction activity for PdRu solid

 $xCO_2 + (x+1)H_2O$

NO reduction on metal surfaces

Graduate School of Engineering science, Osaka University February 21, 2020 NO dissociation on transition metal surfaces

Bulk alloy stability

Comparison of bulk formation energy: Binary vs. Ternary alloy

Binary structure

Ternary structure

$$E_{alloying_bulk} = \left[(NE_{coh_alloybulk} - \left(\sum (n_i E_{coh_i}) \right) \right] / N$$

Computational details and model

Computational Details

- Density Functional Theory-based Calculations
- VASP code
- GGA-PBE exchange-correlation functional
- Projector Augmented Wave method for the pseudopotential
- Cut off Energy is 500 eV
- Convergence criteria 1E-5 eV/atom
- ➤ 3 x 3 x 5 layers of FCC (111)

NO adsorption sites

Mixed surface

36th Computational Materials Design Workshop Graduate School of Engineering science, Osaka University February 21, 2020

1-top_Pd 2-top Ir

3-top Ru

Hollow sites

4-hollow Pd-Ru-Ir/Pd fcc

5-hollow Pd-Ru-Ir/Ir fcc

6-hollow Pd-Ru-Ir/Ru fcc

7-hollow_Pd-Ru-Ir/Pd_hcp

8-hollow Pd-Ru-Ir/Ir hcp 9-hollow_Pd-Ru-Ir/Ru_hcp

Clustered surface

Adsorption Sites

Top sites 1-top_Pd 2-top Ru 3-top_Ir

Bridge sites 4-bridge Pd-Pd 5-bridge Ru-Ru 6-bridge Ir-Ir 7-bridge Pd-Ru 8-bridge Pd-Ir 9-bridge Ru-Ir

Hollow sites 10-hollow_Pd-Pd-Pd_fcc 11-hollow Ru-Ru-Ru fcc 12-hollow_Ir-Ir-Ir_fcc 13-hollow Pd-Pd-Ru/Pd hcp 14-hollow Pd-Ir-Ir/Pd hcp 15-hollow Ru-Ru-Ir/Pd hcp 16-hollow Pd-Ru-Ir fcc

NO adsorption on PdRuIr ternary alloy

<u>Comparison of adsorption energy, N-O bond length and</u> <u>NO additional charge</u>

Initial Advaration	NO adsorption				
Site	Adsorption Site	Adsorption En- ergy (eV)	N-O bond length (Å)	NO additional charge (e)	
Mixed Surface					
Most stable	Ru top	-2.915	1.18	-0.287	
High charge transfer	Ru-Ir/Pd bridge	-2.529	1.22	-0.584	
Clustered Surface					
Most stable	Ru top	-2.530	1.18	-0.257	
High charge transfer	Ru-Ru-Ir/Pd hcp hollow	-2.523	1.24	-0.674	

NO dissociation on PdRuIr ternary alloy: from most stable adsorption

NO diffusion

NO dissociation on PdRulr ternary alloy

Mixed surface

Reaction coordinate 1

Reaction coordinate 3 Reaction coordinate 2

Reaction coordinate 4

Clustered surface

Trend in activity:

 $PdRuIr_{cluster} > PdRuIr_{mixed} > Rh (111)$

Electronic properties

Local density of states

O adsorption on ternary PdRulr

Comparison of O adsorption energy and O addition charge

Bader charge analysis

Charge re-distribution due to alloying

_	Effective Cha		
Surface Atoms	Mixed Surface	Clustered Surface	
Pd	-0.079	-0.080	gain
lr	-0.222	-0.188	gain
Ru	0.161	0.138	loose

*Effective charge is relative to the valence electron number of the isolated atom, negative (-) value entails gain of electron and positive (+) value entails lost of electron.

Change in atomic charge after NO adsorption

Pd Ru Ir Clustered surface

Mixed surface

Summary

- The reactivity for NO reduction on the PdRulr ternary alloy was analyzed using first principles calculation based on density functional theory. Two surface surfaces of different atomic configuration was considered: (1) mixed ordered surfaces and (2) local clustering of surface atoms.
- Analysis of NO dissociation path shows that the mechanism in heterogenous alloyed surfaces could follow a different path than pure surfaces, i.e., NO dissociation on alloyed surfaces could be initiated by molecular diffusion on an active site.
- With that, most stable NO adsorption may not determine activity, rather additional charge gain by NO upon adsorption at the surface could be an indication of activity.
- For the ternary alloy PdRuIr, activation energy barrier is lower on a PdRuIr ternary alloy than the Rh (111) surface.
- Ternary metal alloying altered the surface charge distribution such that Ru surface atoms are partially oxidized. With this, oxidation by adsorbate O atoms will be less probable.

Acknowledgement

- JST ACCEL Program --- (JPMJAC1501) "Creation of the Functional Materials in the Basis of the Inter-Element-Fusion Strategy and their Innovative Applications"
- JST CREST--- (No. 17942262) "Innovative Catalyst and Creation Technologies for the Utilization of Diverse Natural Carbon Resources: In-situ Atomic Characterization of Catalytic Reactions for the Development of Innovative Catalysts"

NAKANISHI LABORATORY

Thank you very much. どもありがとうございました。

