Formaldehyde Dissociation on (111) and (0001) Metal Surfaces

<u>Bhume Chantaramolee</u>¹, Ryan Lacdao Arevalo², Elvis Flaviano Arguelles³, Susan Meñez Aspera¹, Hideaki Kasai^{1,4}, Hiroshi Nakanishi^{1,3}

> ¹National Institute of Technology, Akashi College, Japan ²University of San Carlos, The Philippines ³The University of Tokyo, Japan ⁴Osaka University, Japan

February 21, 2020 CMD® Workshop, Osaka University, Osaka, Japan

Outline

- 1. Introduction
- Formaldehyde Dissociation on Pristine Metal Surfaces
 CH₂O (formaldehyde) and CHO (formyl) adsorptions
 Examples: Analysis of transition states for dissociation
- 3. Summary and Conclusion

Introduction

What is formaldehyde?

- Formaldehyde (CH₂O) is the simplest aldehyde (R-CHO)
- Colorless gas with pungent odor at the room temperature and pressure

Usage

- Precursor to more complex compound, e.g., methanol
- Tissue and cells preserver
- Bacteria dispatch

[1] L. Zhang, et al., Environ. Mol. Mutagen.,51 (2010) p. 181-191

Side Effect

Formaldehyde can cause white blood cell cancer in the long term [1]

Study of Formaldehyde decomposition using metal catalyst is our current objective

2. CH₂O Dissociation on Pristine Metal Surfaces

Formaldehyde Dissociation on Pristine Metal Surfaces

- Experiments show that Pt is a good candidate for formaldehyde decomposition in the absence of the oxygen molecules
- Using Pt as the starting point, we extended the study to other transition metals near Pt
- Transition metals considered in this study are shown in the figure on the right (only highlighted elements are involved)

25	26	27	28	29	30
Mn	Fe	Co	Ni	Cu	Zn
43	44	45	46	47	48
Tc	Ru	Rh	Pd	Ag	Cd
75	76	77	78	79	80
Re	Os	Ir	Pt	Au	Hg

Platinum group metals Other transition metals

HCHO Dissociation Schematic

We considered the low coverage formaldehyde adsorption (2/9 ML in this study), as the high coverage of formaldehyde leads to the polymerization

2. CH₂O Dissociation on Pristine Metal Surfaces

Computational Method

- First-principles approach based on density functional theory using VASP simulation package
- GGA-PBE exchange-correlation functional with vdW-DF corrections of Dion et al.
- PAW pseudopotentials
- plane-wave basis set with 400 eV cut-off energy
- $8 \times 8 \times 1$ Gamma-centered k-points
- Slab model with 9 atoms/layer, and with 5 atomic layers
- Vacuum space of ~14.0 Å along the direction normal to the surfaces
- CI-NEB method for transition states searching

(0001) Surfaces (Ru and Os)

(111) Surfaces (Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au)

Definitions: Adsorption Energies

For formaldehyde (CH₂O) adsorption:

 $E_{\text{ads}} = E_{\text{CH}_2\text{O}+\text{surf.}} - (E_{\text{CH}_2\text{O}} + E_{\text{surf.}})$

• For formyl (CHO) adsorption: $E_{ads} = E_{CHO+surf.} - (E_{CHO} + E_{surf.})$

Formaldehyde and Formyl Adsorption

Adsorption Sites

Adsorption Energies

- Activation barriers of reaction $CH_2O \rightarrow CHO + H$ weakly correlate with the adsorption energy of CH_2O
- Activation barriers of reaction
 CHO → CO + H have
 correlation with the
 adsorption energy of CHO
- Among them, Pt is the best overall

2. CH₂O Dissociation on Pristine Metal Surfaces

 Ir(111) and Ni(111) are the best for the 1st and 2nd steps, respectively

2. CH₂O Dissociation on Pristine Metal Surfaces

- Activation barriers of reaction CH₂O → CHO + H weakly correlate with the adsorption energy of CH₂O
- Activation barriers of
 reaction CHO → CO + H have
 correlation with the
 adsorption energy of CHO

1 $CH_2O \rightarrow CHO + H$ Reaction

We considered the reactions on Ir(111) and Pt(111)

- Reaction on Ir(111) shows the smallest activation barrier, followed by that on Pt(111)
- They also have similar transition state configurations, simplifying the analysis

Transition state configurations

^{2.} CH₂O Dissociation on Pristine Metal Surfaces

2. CH₂O Dissociation on Pristine Metal Surfaces

$1 \quad CH_2O \rightarrow CHO + H$

Two factors contribute to the lowered activation barrier of Ir(111) as compared to Pt(111)

- Hydrogen can make a stronger bond with Ir than Pt. This can be seen from the hydrogen adsorption on the top site of both surfaces
 - H adsorption on Ir(111): -0.36 eV
 - H adsorption on Pt(111): -0.27 eV
- At the transition state, oxygen (of CH₂O) bonding with Pt(111) is weakened at the transition state. On the contrary, oxygen (of CH₂O) break and form a new bond with Ir(111)

2. CH₂O Dissociation on Pristine Metal Surfaces

We considered the reaction on Os(0001), Ru(0001), Rh(111), and Ni(111)

- They involve the reaction with highest activation barrier [Os(0001)] and the lowest activation barrier [Ni(111)]
- The common feature of the formyl adsorption on these surfaces is that formyl's oxygen binds with the surface atom at the initial configuration

2 CHO \rightarrow CO + H

while *p* orbitals were projected on the oxygen (of CHO)

Electron density

Since we need to break the O-metal bond, the case where O (of CHO) strongly binds with surface like Fig. A has higher activation barrier as compared to case of Fig. B, C, and D

2. CH₂O Dissociation on Pristine Metal Surfaces

n

Summary and Conclusion

CH₂O and CHO adsorption energies on pristine metal surfaces: the general trend

- CH₂O adsorption energies decrease as the metal surfaces are changed from group 8 towards group 11. Within the same group, 3d metals provide the strongest adsorption energies, followed by 4d and 5d metals.
- For CHO adsorption energies, 3*d* transition metals show the weakest adsorption energies, followed by 4*d* and 5*d*.

Summary and Conclusion

- The reaction on Ir(111) has the smallest activation barrier, followed by that on Pt(111)
- Two factors contributing to the smaller activation barrier on Ir(111):
 - Hydrogen can make a stronger bond with Ir(111) than Pt(111), lowering the total energy at the transition states
 - Oxygen (of CH₂O) bond was partially broken at the transition state in the case of Pt(111), while they are retained on Ir(111)

Summary and Conclusion

- The reaction on Ni(111) has the smallest activation barrier
- We investigated the electronic structures on Ni(111), Ru(0001), Rh(111), and Os(0001). The lowered activation barrier of the reaction on Ni(111) is due to the weak O (of CHO) bonding with the Ni(111)

Acknowledgements

This project is financially supported by ACCEL, a research program under Japan Science and Technology Agency (JST)

Thank you very much