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Electronic structure of diatomic
molecules
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Molecular orbital picture

Known results in DFT-LDA
* Molecular orbital picture is given for any inter-atomic distance.
* The stable electronic state in equilibrium is well-reproduced. |
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Molecular orbital given by DFT-
LDA
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Dependence on Inter-atomic
distance
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Is there any concise method to describe this dependence?



Correlation effects

In DFT-LDA, the Kohn-Sham orbital is
determined with correlation effects included In

the effective potential.

The correlation effect can behave differently
depending on atomic configuration.

A key Is,

2
E..[n] =e—_[drn r _[dr 1 n(r,r)
‘r I“ Charge fluctuation!

n(r,r)= j[g (r,r,A)- )/

:jo[‘{’i\: A(r)—n(r)XA(r) - n(r): ¥, )/ n(r A :
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This is a weak correlation limit!  This is a strong correlation limit!

In real nature & in CI, we have
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Quantum mechanical superposition
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S=1 ground state! S=1 ground state!

This is a strong correlation limit! This is a strong correlation limit!
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How the multi-reference density
functional theory acts?

The Kohn-Sham single-particle description
may be used, but may not always be reliable.

So, if a simplified description allowing a multi-
Slater determinant is introduced, we may use
the method as another starting point.

A simplest case Is a DFT-LDA solution for a
degenerate ground state.

Determination of GS may be
i) A possible by looking at
| | ﬁ « charge-charge correlation
S=1, S,=1 S=0,S,=0 O . . 8
e variational energy.



Two physical quantities specifying
correlation effects

Density-density correlation : FRM

<D.2> = <(niT +ny =(ny) _<”i¢>)2>
Variational energy : DFVT

Ey < Xmin [mqin G—X,-.F,,g,-[\p] + Al:;xi.e,.gf[‘lll l
iEi8i ?

G-X,'.P, Q,[ql] (WIT—}— VX |\[J) fd3 d'% "\p(l')"\p(r)
2 |r — 1|

+ E; [ny] + Eg [V] + / d*r Ve (r)ny(r).

1

AE N7 &rd’r
X.engil W] = 2[ r r—r|

X (W] : (A(r) — ng(r))(A(r) — ny(r)) : |¥)
— E. [ng] — E, [¥] — (W|Vy, |W).




Fluctuation reference method

To have a simplified description based on
DFT, we need information given by another
accurate electronic structure calculation.

= Diffusion Monte-Carlo method for electron gas
= LDA, GGA

= Complete-Active-Space Configuration-
Interaction method = FRM to determine U.

FRM : Fluctuation reference method
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Two Hydrogen systems

H, Molecule
We define ¢; by @)
b= —= 0+ )
1 — \/§ X1 X2},
]_ ® &
- T = — ) R
§b2 \/—2‘(X1 X2)
for the molecule and the Wannier state
1 2 2 (b)
P — T = ._k ’L) 5 1
b1 b 3o (k)
for a chain with N atoms. 6|6 % o & D OE s i wlw
a | |
tij = /Qb {——A +veff(r)}gbj(r)dr.

Hydrogen array
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Local fluctuation on ¢, of H,

<D|2> = <(niT +n, —(n,) —<ni¢>)2> as a function of the inter atomic distance

l 0.7A l
n._ . =2. n.=1.0
nbondmg 2.0 125 Small U regime
2 n.)=0.5
<nbonding> = O < 1s>
- - »
ﬁbonding — 10 ﬁ1s — 10
2 2 Large U regime
<Dbonding> =1.0 <D15> =0

We are able to find relevant orbitals with Coulomb suppression by
1. Finding an orbital ( or a set of orbitals ) on which fluctuation becomes 1.
2. Using a unitary transformation to have localized orbitals. 12



Orbital fluctuation in CI calculation

CAS-CI calculation for H, by S. Yamanaka.

Small U/t /% !
U~ 0.7eV / I B ]

'S chs.m[z,z]
+ cCAsCi[2,2]-DFT

Molecular orbital limit | _

ler-London limit
%
Large U/t

U ~ 10eV

i 3
u.l:m " L L " [l L 1 1 L M 1 1 1 1 N 1 1 a a 1 M M " 1
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In the whole range, mean occupation of 1sis 1. 13



A test calculation of Hydrogen
systems

E,.[n] is given by LDA of PW91.

Plane-wave expansion with the Troullier-Martins soft-
pseudopotential is introduced for H.

The energy cutoff for the plane-wave is 40Ry.

The solver of single-particle part of the extended Kohn-
Sham equation is given by the “opt” code.

Effective many-body problem is solved by the exact
diagonalization with e.g. the Lanczos method.
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The value of U for H, determined by
FRM

Reference calculation: CASCI method for H,

[Ry]
14|
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(n3)
The 15t method to have U by the fluctuation reference method.
K. Kusakabe, et al. J. Phys.: Condens. Matter (2007).




Charge density of H, given by MR-

D FT Weak correlation regime

This section Is
Shown in the
right panels.

Strong correlation regime

T”; |

11U is need.

I

To reproduce bonding charge in T I T

correlated electron regime, we need to f : X

overcome difficulty in the single-reference 7 |
description. It is achieved by using the T
multi-reference description as known in S

the Hybrid-DFT. B e

(Cf. S. Yamanaka, et al.)




Variational method

DFVT for MR-DFT DFT model formation
Ey < meu: {m\gn G0 [ W] + AEX;.S,.g;[qI]}, Ey < xms": {mm Gx el V] + AEx, ¢ 0. [ V] l
. 5 e’ ny(r)ng(r’)
Gx.e.o[¥] = (W|T + Vg |W) + — [ &rd>y ———= ,
X0V = (VIT + Vx, | W) + 2/ r " MBI = Fingl — _fdz & ;"\l'lt.r)_"u;l(ll')

it EF, [n\ll] ¥ Eg,[\l’] = fd r vexl(r)"\ll(r) A a
. — Egny] — Eg [W] — (WIT + Vy,[W).
ABy;0[¥] = — | &rd’r l

2 Ir—r|
x (W] : (A(r) — ny(r)(A(r) — ny(r)) : |¥) PB EO"‘GW, PBEO+U will be refined.

— E. [ny] — E, [ W] — (¥|Vy, |W).

It is possible to evaluate AE[‘{’].

Note: If DFVT is used in a space of single Slater

determinant, the Hartree-Fock approx. is given.

This is natural, but not so trivial. -
Thanks to Dr. Maruyama & Dr. Friedlich.




To understand MR-DFT

Ey, < min [m\gn Gx,.e,.0 [ W] + AEy, o0, [ W] }

Xi &i.8i

ny(r)ny(r’)
1 o

— E, [ny] — E, [¥] — (W|T + Vy | W),

e.‘!
AEy, .0 |¥] = F [ng] — o / d*rdr

This functional contains
the universal energy- This functional should be

density functional F[n] evaluated using a multi-
Slater description.

AE (V] = —el fd3 d*r : /
i — rd’r
e 2 Ir —r'|

X (W] & (A(r) — ny(r)(Ar) — ny(r')) : |¥)
— E, [ny] — E, [¥] — (¥|Vy | ).
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Helsenberg exchange:
Introduction to the localized spin model

Heisenberg and Dirac considered quantum
mechanical origin of magnetic interaction

’ ’ J>0 : Parallel spin configuration
Ferromagnetic

J<0 : Anti-parallel spin configuration
-J Sn . Sj Antiferromagnetic

whose order of magnitude can be of the order of
the Coulomb interaction.

Where does J come from?

19



|dea of restriction of the phase space

For low-energy states, we may consider only
states in a restricted phase space.
E

4s,4p.4d.4f

\ {2@38,31),3(1

The 1s orbital of
the Hydrogen atom

Is
Let’s consider the phase space spanned

by spin states |1s,7 ), |1s:) ).

20



Atomic orbitals and molecular orbitals

Atomic orbitals

‘ 9. (r)és (1)
Car|0)

a

Molecular orbitals (in LCAO)

‘ ’ ( (¢ (r) + ¢, ()5, (V)

\/E (CaT T CbT 1 O>




The Heitler-London theory of H,

Two electrons repel each other and each orbital ¢, (v = a, b) is occupied by
an electronA picture in the strong correlation limit!!

Uy (ry,r2) = @a(r1)dp(r2) 2(Tr1,T2) = @u(r2)Pp(r1)

e 00

Note that there is no doubly occupied 1s orbital in this theory.

First key: Quantum states are linear combinations of ¥ and Wy due to Pauli’s

principle. e (3) (4)
Singlet: U, = c, (V] + Uy). Triplet: V_ = c_ (\Ifl Uy).
(S1 + 82)2 = 0. (Sl - Sg) = 2

E=E,. E=E_. 2



Energy of spin states

Using following values, E. are obtained.

The orbital energy ¢, given by Ho,(r) = eypy(r). (v = a,b and H is the
Hamiltonian of an atom.)

An overlap integral S = [ ¢} (r)@,(r)dr.

e e e e
A Coulomb integral U = [ Vj(ry,rs) ( +———— ) Uy (ry, ro)drdrs.
Ry 12 115 T
g e g g
An exchange integral I = [ ¥](ry,r9) ( +———— ) Uy(ry, ro)dridrs.
Ry T2 T35 T
We have U] U1
E, =2e)+ E_=2ey+

1+527 1—52°
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Evaluation of J: Direct exchange

The triplet-singlet separation is evaluated as,
UsS?—1
1—54
Second key: Energy separation between the magnetic state and the non-
magnetic state can be as large as the Coulomb interaction.

AE=E_ —E,. =9

The Heisenberg interaction is redescribed as,

S1+S9)?% 3
Hpeis = —J1281 - S0 = —Jo ( 12 2)” _ 1
Energy of each state becomes E_ = —i(]lz for the triplets and E, = %Jm for
the singlet, which results AE = —Jj9 and thus,
US? -1
= —2 .
12 1 — 54

If S =0, the interaction is ferromagnetic.
24



Ferromagnetic direct exchange |I.

Consider atomic orbitals ¢, (r) which is real.

“The exchange integral I is positive, i.e. it is ferromagnetic, when S = 0.”

Proof: The definition of I is,
2 2 2 2

T = [ Gh(r)irs) |—— + — — — — —| Gu(ra)dy(r1)dr1drs .

Ry T2 T3 T

Let S=0, then we have,

2
I= /f—mqﬁmrumrlwa<r2>¢z<rz>dr1dr2 .

25



Ferromagnetic direct exchange Il.

Exchange integral of two orthogonal orbitals with S=0

becomes ferromagnetic.
A proof: Consider the exchange integral when S=0.

= ot 0 (A )

Note that the expression below.

8, (r) (r )—zRe(¢*(r)¢b<r1))+i imlg,” (r)e, (r,)
| = [drdr, —=— 8. (r)e (0, () (1)

\r —rz\
2

~ Jnr, = Relg, (1 ()< Relg. () ()

\r |

+_drdr ¢ Im(¢a*(r1)¢b(r1))xIm(¢a*(r2)¢b(r2))

-]

To show the positivity 02f l, it Is enough to consider an integral of real functions,
I —jdrdr —°_o(r)o(r,)
[ 2




Ferromagnetic direct exchange IlI.

Substitute next expressions into 1.
g 2
7=/dq —exp(iq-r),
@ (r) = [dqu(q)exp(iq-r) .
Since @ are real, v*(q) = v(-q). Then, we can show,

4re? ,
2 exp(iq - (ry — r9))

d = /dl‘ldrzqu
[ dayv(au) exp(iqy - r1) [ dgav(qs) exp(iqy - o)

= [da = v(~q)v(a)

2

= /dq7v*<q)v<q) >0.

27



Slater determinants for a system with two electrons I.

1. Triplet states I !
a

<I’1, 1; Iy, 2|St0t = 1, Sz — 1> = <I‘1, 1; Io, 2|¢a T, qbb T)
_ L ¢a(r1)€T<1) ¢a(r2)§T<2) _ L ¢a(r) d)a(r)
V2| du(r)ér(1) du(r2)ér(2) ‘ V2 ¢b(1‘1) ¢b(r§) &l&(2) (1)

<I‘1, 1; 1o, Q‘Stot =1, S, = > — <I‘1, L; T, 2‘S1f_ot|¢a Ts ¢b T>
— | Gerr) | (162 + DEN()
- %{(%(n)&( D) — B & (1)B(r2)6,(2

+( (r1)& (1) dn(r2)é4(2) — o
{ Pa(r1)é1(1) @a 1’2)&
V2| d(r1) (1) du(ra)€) (2




Slater determinants for a system with two electrons IlI.
Thus,
<I’1, L; ro, 2|‘S'tot =1, S, = 1,0, _1>
(& (1)Er(2)
— 5| Ge Gt g D2 + &6 (2) 3)

| §1(1)€,(2)
2. Singlet states
We have another state which is orthogonal to | Sy = 1,5, = 0).
rl\/lulti Slater determinants

(r1,1;r2,2|S: =0, S, = 0)

_ 1 {L Pa(r1)&4(1) %(rz)&(?)‘_i a(r)€L(1) @a(r2))(2) ‘}
V2 (V2] ¢p(r1)€L(1) ¢n(r2)€,(2) Gy(r1)€(1) Pr(r2)é4(2)

(1
— {(Bur)E B E)ER) — Bi(r)E(D)dalr2)€,(2)
— (@a(r1)& (1) Pp(r2)&r(2) — ¢b(r1)€¢( )¢a(r2)§¢( )}

1
= 75 (Pa(r1)u(ra) + du(r1)da(r2)) ‘ &u1)

(N

2
+(2)
12)




Spin states In the second quantization

In the second-quantization description,

e o L 66D dur)én@)
w1, 1E2 205 = 1,5, =1) = V2| o(r1)ér(1) du(ra)ér(2)

— |St0t = 1, Sz = 1> = Ca,ch,T|0>

Similarly,
1
|Stot = 1,5, =0) = E( ZTC};¢ + CL,¢CZ,T)|0>
|St0t =1,8;=—1) = IL Cb¢‘0>
1 dod
[Stat = 0,8, =0} = \/§( CatCh,| — Cq |G, T)VO>
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2-electrons 1n molecular orbitals

Let us consider two electrons in the bonding orbital.

<I‘1, 1; Iy, 2|%<¢a T ¢b) T; %(¢a + be) ¢>
= J(6ulen) + ) (6ulrs) + )| ) 610

: |\}§<¢a+¢b> T,@wawb) l
1

= §(CZ,T + Cz,T) (Cjw + CZ,D 0) (5)

If we expand eq. (5), we obtain,

|7(¢a + @) T, \/—(% + &) L)

1 1 1
= ﬁ{ﬁ< chacly — cb eha)|0) + E(CL,TCL,¢+CIT>,TCIT>,¢)|O>} (6)

The Heitler-London wf. lonic states! 31



The Heitler-London state v.s. the molecular
orbitals

We can consider a trial (variational) state in which ionic states are mixed with
the Heitler-London wavefunction.

’Stot — 0§04>
1 1 ; :

— f T - i tot
T Vita? {\/i (a1 = Cagait)l0) + (s + Cb,TCb,¢)\0>} (7)

1. « = 0 : the Heiter-London wavefunction (Localized electron picture)

2. a =1 : the doubly-occupied bonding state (Delocalized electron picture)

The true w.f. is close to a variational state with O<a<1.

o is dependent on the inter-electron interaction or choice of
the model (interaction parameters etc.).

32



The Hubbard model : I.

1. Consider a system with atomic sites. Each site is assumed
to have an orbital for the conduction electrons
2. Electrons can hop between neighboring sites by a transfer
Integral t.
3. Two electrons coming across at a site feels a repulsive
Interaction U.

QG900




The Hubbard model : 1.

1) The Bloch function

For crystals, the single particle wave function ¢; »(r) is given in a Bloch form as,

Onko(T) = €Uy, (T) |

where n and k are the band index and the wave vector, respectively. u, ,(r) is a function with
periodicity of the lattice. ¢,k » satisfies,

h2
{_—Ar £ Ueﬂ“(r)} ¢n,k,a(r) - en,kgbmk"’(r) :

2m

2) The Wannier function

A localized function at a lattice point r; can be made as,

1 —ikr;
gbn,a(r — ri) = \/—N 2 € K ngn,k,d(r)
Notes:

1) ¢nxe(r) (and ¢y, »(r —r;)) give an orthonormal complete set.

2) The definition of the Wannier func. has a degree of freedom.
Cf. Marzari and Vanderbilt, PRB 56 (1997) 12847.
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The Hubbard model : IlI.

Introduce creation (annihilation) operators ¢ly, (¢nko) satisfying
W;(I') — 7%:{qs;kz,k,a(r)cjzka )

the effective Hamiltonian is written as,

i T
Heff = X €n,kCnkoCnko -
nko

Introduce a unitary transformation,

| .
= — % Tzn: e’ Urn_wll (k)crko

Cnic

N

1 .
lie = =X e MU, (K)eh g, -
. —TTe nm(K)Crko

The effective Hamiltonian is rewritten as,

Hpa= T SH™(chigtmio + Hee.)

nmij 7
This model is called the tight-binding model, where ¢ = % ) e/K(r—T; )Uqﬁl(k)&‘g,kU 1m(K).

35



The Hubbard model

Consider the Hartree approximation to make an effective potential. (The method below is
applicable for the Hartree-Fock approximation, but we need another formulation for DFT.)

_ T
HO — Z En,kcnkgcnko

nk,o

B = o [drd "r o 5 VRO ) ()
ple) S e (r) — o [drds' S p(r)olr)

/ Erd>r’
r —r/|

e
v —r|

Expand 5(r) (1,(r)) into ¢y, (cuko), utilize the unitary transformation into ¢\, (Cni),
then H is rewritten as,

. 1

H = 5 % m12m4 Z(mlz mzy\ Imsk, myl) mlwcjw,cm?)kg,cmw
1) oo’

- E Z Z(mlz m2]| |m3k m4l>Vm2]m3ijn1wcm4la
zgkl myp-my O

62

- d3d3/—
= 2/ r T|r—r’|

p(r)p(r'

where vy, imy; = (1/N) o e *E0T, 0 (K) (na) UL, (k).

nmo
36



The Hubbard model : V.

Consider a single band model with well-localized Wannier orbitals. The local interactions are
classified into groups. Hubbard estimated the values as follows. (Hubbard 1963)

1. Intra-orbital repulsion: U = (44| 1]ii) ~ 20 eV
2. Inter-orbital repulsion: V' = (ij|2[ji) ~ 6 eV

3. Correlated hopping: X = (zz\%] ji) ~1/2 eV

4. Offsite corr. hop.: X' = (ij|1|ki) ~ 1/20 eV

5. Inter-orbital exchange: J = (ij|1|ij) ~ 1/40 eV
6. Pair hopping: J' = (ii|1|5j) ~ 1/40 eV

Note that we may utilize screened values, if we consider screening effects due to electrons in

other bands. Usually the counter term with v;; is assumed to be irrelavant for discussion of
low-energy phenomena.

Thus, we may utilize the Hubbard model

H=— <Z> >l g (C]L'L)U(Ejﬂ -+ HC) +U > My ATy |
i.j) 7 ‘

for the discussion of magnetism. 37



The Hubbard model : V
T

Introduce a creation operator (an annihilation operator) c; ,
(¢io) for each local orbital. They satisfy commutation relation.

{Ci,aa ]g/} — 5@3500’ -

The Hubbard model is given by,

H = —<Z>Zt”(cjacja+Hc)+U2nmnw
7]

e ¢, i : Transfer integral

e U : The Hubbard interaction parameter

38



2-S1te Hubbard model : I.

Consider a 2-site Hubbard model.
Each site allows 4 states, |0), c;r,T|0>, c;-r,¢|0), and C}:TCI’“O). (7 =a,b)

e States available : 42 = 16

e States with 2 electrons : 6.

e States with one 1 spin and one | spin : 4.

We consider the next 4 states. t

o |a,T;b,]) = CZ’TCZMO). n
o, 4;b,1) = el 00 Um
o |a,1,4;b,0) = cl 1l ||0).

a

® |a,0; b7 T) \L> = C;g,TCZ,iJO)‘

b

39



2-S1te Hubbard model : 1.

The Hamiltonian is given by,

H=—t ;(Cz,aca,d + Cl,acbﬂ) +U : 2 bni,Tni,i (8)
=0
A matrix representation of H in terms of the above 4 states are,
00 t t ]
.10 0 —t —t
H= t -t U O 9)
't —t 0 U
Using a unitary transformation U which gives spin eigen states,
o |Sit =0,a) = %(CLTCZ7¢ — cl)ic};ﬁ)\O).

® St =0,08) = %(Cl,fch + CZ];,TCZ,L)‘(D'

(chacl | — ch4ch )]0

Ja(curcl ) + ¢l 1)10).

o |Sit =0,7) = %
o Stot — 17 Sz O>

40



2-Site Hubbard model : 111.

U is defined by,
- i -
L
= O -
V2 V2
0 - -1 0
_ V2 V2T
Then, we have a block-diagonalized H,
(0 2t 0 0]
_ 1200 00
U 'HU= 00 U0 (11)
0 0 00

and eigen values are

¢ By =1 (U— VUT+1682) ~ =
1 5 5 42 Crossover from weak
.E2:§<U+\/U +16t)NU+7- coupling regime to strong

o Fs=U. o F,=0. coupling regime

41



Enerey

2-SIte Hubbard model : V.

S e |
[ R > T = = I we B b

|
M o

g =4
5 //ﬂ" —
. ﬁ/ﬂ/’/‘
e e il PP /
_:i W - _;!' h S
3 = et t
01 2 3 4 5 6 7 8 910

L/t

{

Weak coupling regime (MO)

Note: GS is always
a singlet state.

The Hubbard gap

Energy scale of the
AF kinetic exchange

trong coupling regime
(HL)

}Singlet states

Triplet states
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Concept of the Mott insulator

Electron transfer from an orbital to an occupied
orbital is prohibited by the Coulomb repulsion.
This leads to an insulating state.

0000
990
0000

The half-filled Hubbard model Formation of the Mott gap in

shows the Mott insulating ground the single particle excitation.
state. 13

A
Mott gap

or
Hubbard gap >




The kinetic exchange

Effective interaction at around U=«
P ’ “ ‘
We have another
Q process starting from
transfer of the up
spin moving to the

neighboring site.
H o = ZLZZ(S .S. _1) Antiferromagnetic
° U <i J> | J 4

Heisenberg model.
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Superexchange interaction

In the transition-metal oxides, there is a structure of M-O-M
(M: transition metal, O: oxygen). Along this structure, two
localized spins couples via the superexchane through non-
magnetic oxygen atom.

Often, Mott insulator is formed.
— M has an open d-shell.

) 98

x2y2@ M

‘!' x2—y2@|\/I




The Kanamori-Goodenough rule
Consider description by non-orthogonalized atomic
orbitals (LCAQ picture)

The electron transfer is possible from O to M when two
neiboring orbitals are not orthogonal.

The sign of exchange interaction between d and p Is,

= Ferromagnetic if two orbitals are orthogonal with each
other,

= Antiferromagnetic if two orbitals are not orthogonal

Occupation of d-orbitals are determined by the crystal
field splitting and the Hund rule.

Following the above rule, we can determine the sign of
superexchange in a qualitative manner.

P.W. Anderson reformulated the rule using the orthogonalized

Wannier basis allowing the second quantization scheme.



Exanple of antiferromagnetic
exchange

Non-orthogonal: finite transfer

“/ J: antiferromagneti\

Po

Mn2+ : 6S,, %I B — Non-perturbative

A J, States in exci-
* BALEE tation
(1) - LA v
~p— 1 | Non-perturbative

F
e U
Mn2t © 65 . A - ground state
N °Sgp T -

5
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Various types of exchange
Interaction

Direct exchange : (Cf. Heitler-London theory)
Kinetic exchange : (Cf. the Hubbard model)
Super exchange

Double exchange

RKKY interaction

Anisotropic exchange interaction
Dzyaloshinskii-Moriya interaction

1. Exchange interactions except for the 15t one
are effective interactions.

2. Effective interactions can be derived from a

model with local interactions. 48



An almighty method

Space of DFT models CASET
: _ g-vicinity around
= Distance : exact solution

m =1l »

= Variational principle: DFVT by K.K. (2009).

/ \ CASE Il

Exact solution

Hartri:ock “I:X’ @

Gateaux derivative
l# GgA in the model space ’

determines the h .
a” (irection to follow. Phase transition

\ — lines 49




Super processes

To have an initial state of correlated electron system, we may utilize

The upconversion Hamiltonian

H, +HMA + HM A —E
which leads us to the convergent model series in the DFT model space.
Cf. K. Kusakabe, I. Maruyama, “Electronic state calculation method, electronic

state calculation device, computer program”, PCT filed No. PCT/JP2011/068589,
date 2011.8.18.

H,, + HAZA ZA-AR, 1 PHA W)= E[W,)

Problems in static state Semi-classical &

Quantum
Magnetism  Superconductivity quantum

processes in QED!

Two &
Ve
photon

The super- UE SUE-

exchange hopalirn
process PPING

The van-

der-Waals

Interaction
process processes [




Exchange scattering

Feynman diagram of exchange Evaluation of c-f exchange

Cedf, N—> Vv Ceaf,

()

eff —cf /o ¢.

CB ]!
Ce 4f, W —> AN Ceus,
Cedf N—> \V Ceaf

VB 3

AF effective exchange
VBen V> o A e s = The Kondo Screening

Upconversion Hamiltonian with SUpPer processes

g JA-A G AOA JAA —
[Hl,i+H2 H2 PB I_'\Ili+|_f\|2Ai_)Ai +|_A|Ai(_)AiC —E PBH2 ]|\PI>_E|\PI>’

2
H, =T +V = —;l—mj' drlim ., 7" (r)Ap(r)+ [ d°rv (r)a(r)+ ﬁ E, [¥]

V. (r)= L{%J‘ d®rdr' n(rn(r )+ E, [n]+j d3rvext(r)n(r)}

an(r) r—ri
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A unified picture of high-T, materials

Isolated center band ~ Embedded center band Band structure of Tl-cuprates

Correlation enhanced Correlation enhanced *°L. L — Ly . !

O - V70 4 G e 0 U0 S 4 5 U S S O 3 0
K-point distance density (states/eV)

Empirical rule :

1. Embedded type preferable

2. Larger band width of center band preferable

3. Correlation induced by localized Wannier orbital preferable



Evaluation of matrix elements

(Vee)(n,K),k':k’(m,K) 4x4x1 mesh

_ f d3 I‘d3 v engik(' (r)(p;,K(r’)¢k’ (r,)(pm,K(r) -

2r — 1’|
Hg-comp. 186eVatl’ 120eVetc. 10.2eV 6.4 eV
TI-comp. 18.6eVatl’ 5.4eV etc. 8.3 eV 5.1eV

Process A, C : A correlator as energy increment by fluctuation in the number
density of particles in the correlated band allows an approximated form via
introduction of approximated Green’s functions (resolvents).

Process B : A gap in un-correlated bands allows an approximated form as,

(Vee )k m.K):(n.K) k(Vee) (. K) K K (mK)
Jeff _
kk =~ E , > :
’ - . €K, + €K,
K,nEAl,meA2 n m
_ efft | F T
Hgey = § Jk’krCk,’ackﬂ,ck',(r'ck,a- 53
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Super process as two-particle G.F.

(a) 4

(b) 4

AC

A

C

A}\/\/\/\/{A
A A€
C

Symmetric form of the bare
Coulomb interaction

AC

Effective interaction diagram leading
the Bethe-Salpeter equation (BSE)

Bubble diagram by the
polarization function with
vertex correction (red part)

Ladder diagram
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Derivation of screened Interaction

) _ § r § r N .
VX1XQX3X4 - %1{2:},'354 (-'31’0-(-'52!0.!(-'33,0’ Cly,o-

[1€X1,l2€X2,I3€X3,14€ X4 0,07 Bare interaction term

Aeanne (@)

= Viacaaae + VaaaaexVacacane + Vasaae xVaseaaexVacacaae

+ VaaaaexVaaeaaexVaseane x Ve ae g0 + -+ \ Polarization function
1
= Viaeaaae + Vaaaaex Vaeenae
1 — Vaigeaaex
1/2 1

= Vieaaae + Vagaaex

1/2
X " Viae e a0
L — \V2Vype 40012

scr ( ) Screening in c-RPA level : Vertex correction can be considered.
AcAAAC

1
l
1 — V(Ack( )VAC)A

T [ — T
Vithe = Vare @)Vidhe.

Screened interaction term 5

[
~vf)



Super process In general forms

General operator expression

~

A A A A A -1 .
Hopor = Pabap (B = Ha—hp = PoHlan — Hpa)  HpaPa.

A N A A N —1

G:(E_HA_}I'B_PBHAB_HBA) .
Phase-space dependent expression

Hsuper

_PAZ|A A|HABZ|BL V(B |G )Z|Bg BE|HBAZ|A (A;|Py

=1 j=1

= PAZ | Ai) Z A'|HAB|Bk><Bk|G(B |BI)(Bi|Hpa|A;)(A;]|Pa

— Z PA|A super <A3|PA

A matrix element in an approximated expression corresponding to a 3" order diagram
(Hoper)"”
= (Vaaaae)agipx(w = E — (€2 + 1)) 56
X (VAACAAC)QHQX(W =5 — (62 + él))(VACACAAC)Qillli-



Electron-hole Interaction In
semiconductors

(a) (b)

A Viaaac A€ A Viaaac A€
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The GW scheme

|4V e + Vitatee + Ve |

wiS) =S |wi). Kohn-Sham equation

o + (6 ) i ) = 6
<r,a|ﬁ a)‘z//i > Idr ra|2( )|r',a>§a’g.<r',a'

—jdr I'I',a))l//”:( ).

Hartree

<>

T4Vt v, Quasi-particle equation

v) Self-energy expression

Za(r,r';a))zé | do'e”’G, (rrs0+0)W (rrie')de. The GW self-energy

(i) 3V W)

KS
i a)—gi’o_

The 0-th order Green function

W(rrsm)= 3 e ITWE (qsw)e (0T, Screened interaction

G'

KS (ye n) — > 1 KS ~1(,y. 1 . . .
Wee (d50) = —47e¢" i éee (B@)gaor Screened interaction matrix

fc (W) =5 6 —4rme? |G1 e (q;w)m, Dielectric function
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GW as an approximation

(I_All,i + I:IzAi_)Ai - I_Aleic_)Aq PB

N OAASA A OGA -~ B
H,;+H,; 2% +H, N —E

Wy (@S(1ETE0)
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Thank you for your attention.

K. Kusakabe



