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Electronic structure of diatomic

molecules

Bonding

Anti-bonding

Non-bonding

Molecular orbital picture Heitler-London picture

Known results in DFT-LDA

• Molecular orbital picture is given for any inter-atomic distance.

• The stable electronic state in equilibrium is well-reproduced.

a
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Molecular orbital given by DFT-

LDA
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Dependence on inter-atomic 

distance
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may be constructed.

1,1s 2,1s&

Non-bonding
Hitler-London picture

Is there any concise method to describe this dependence?
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Correlation effects

◼ In DFT-LDA, the Kohn-Sham orbital is 

determined with correlation effects included in 

the effective potential.

◼ The correlation effect can behave differently 

depending on atomic configuration.

◼ A key is,
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Charge fluctuation!
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H2

Bonding

Anti-bonding

Non-bonding

a

This is a strong correlation limit!This is a weak correlation limit!
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Quantum mechanical superposition

In real nature & in CI, we have



O2

a

2s2 2p4

This is a strong correlation limit! This is a strong correlation limit!

S=1 ground state! S=1 ground state!

This picture is not true!
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How the multi-reference density 

functional theory acts?

◼ The Kohn-Sham single-particle description 

may be used, but may not always be reliable.

◼ So, if a simplified description allowing a multi-

Slater determinant is introduced, we may use 

the method as another starting point.

◼ A simplest case is a DFT-LDA solution for a 

degenerate ground state.

S=1, Sz=1 S=0, Sz=0

Determination of GS may be 

possible by looking at

• charge-charge correlation

or

• variational energy. 8



Two physical quantities specifying 

correlation effects

◼ Density-density correlation : FRM

◼ Variational energy : DFVT
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Fluctuation reference method

◼ To have a simplified description based on 

DFT, we need information given by another 

accurate electronic structure calculation.

◼ Diffusion Monte-Carlo method for electron gas 

⇒ LDA, GGA

◼ Complete-Active-Space Configuration-

Interaction method ⇒ FRM to determine U.

FRM : Fluctuation reference method
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Two Hydrogen systems

H2 Molecule

Hydrogen array
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Local fluctuation on f1s of H2
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Small U regime

Large U regime

We are able to find relevant orbitals with Coulomb suppression by

1. Finding an orbital ( or a set of orbitals ) on which fluctuation becomes 1.

2. Using a unitary transformation to have localized orbitals.

as a function of  the inter atomic distance
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Orbital fluctuation in CI calculation

CAS-CI calculation for H2 by S. Yamanaka.

Molecular orbital limit

Heitler-London limit

Large U/t

U ～ 10eV

Small U/t

U ～ 0.7eV

In the whole range, mean occupation of 1s is 1.

2

in
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A test calculation of Hydrogen 

systems
◼ Exc[n] is given by LDA of PW91.

◼ Plane-wave expansion with the Troullier-Martins soft-

pseudopotential is introduced for H.

◼ The energy cutoff for the plane-wave is 40Ry.

◼ The solver of single-particle part of the extended Kohn-

Sham equation is given by the “opt” code.

◼ Effective many-body problem is solved by the exact 

diagonalization with e.g. the Lanczos method.
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The value of U for H2 determined by 

FRM
Reference calculation: CASCI method for H2

R=2.0Å

R=3.0Å
R=1.2Å

K. Kusakabe, et al. J. Phys.: Condens. Matter (2007).

The 1st method to have U by the fluctuation reference method.
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Charge density of H2 given by MR-

DFT
R=0.6Å

R=2.0Å

This section is

Shown in the 

right panels.

To reproduce bonding charge in 

correlated electron regime,  we need to 

overcome difficulty in the single-reference 

description. It is achieved by using the 

multi-reference description as known in 

the Hybrid-DFT.

(Cf. S. Yamanaka, et al.)

U is not

needed. 

U is need.

Weak correlation regime

Strong correlation regime
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Variational method

DFT model formationDFVT for MR-DFT

PBE0+GW, PBE0+U will be refined. 

It is possible to evaluate DE[].

Note: If DFVT is used in a space of single Slater 

determinant, the Hartree-Fock approx.  is given. 

This is natural, but not so trivial. 

Thanks to Dr. Maruyama & Dr. Friedlich.

-
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To understand MR-DFT

This functional contains 

the universal energy-

density functional F[n]

This functional should be 

evaluated using a multi-

Slater description.

18



Heisenberg exchange:

Introduction to  the localized spin model

◼ Heisenberg and Dirac considered quantum 
mechanical origin of magnetic interaction 

whose order of magnitude can be of the order of  
the Coulomb interaction.

Where does J come from?  

-J S ・Si j

↑ ↓ J>0 : Parallel spin configuration

Ferromagnetic

J<0 : Anti-parallel spin configuration

Antiferromagnetic
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Idea of restriction of the phase space

◼ For low-energy states, we may consider only 

states in a restricted phase space.

The 1s orbital of

the Hydrogen atom

Let’s consider the phase space spanned 

by spin states             ,              . ,↑1| s 1| s ,↓
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Atomic orbitals and molecular orbitals

◼ Atomic orbitals

◼ Molecular orbitals (in LCAO)
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The Heitler-London theory of H2

r1 r2

a b

r2 r1

a b

(3) (4)

Note that there is no doubly occupied 1s orbital in this theory.

A picture in the strong correlation limit!!
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Energy of spin states
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Evaluation of J: Direct exchange

24



Ferromagnetic direct exchange I.

* *

* *
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Ferromagnetic direct exchange II.
◼ Exchange integral of two orthogonal orbitals with S=0 

becomes ferromagnetic.
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A proof: Consider the exchange integral when S=0.

Note that the expression below.

To show the positivity of I, it is enough to consider an integral of real functions,
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Ferromagnetic direct exchange III.



 -q).
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Slater determinants for a system with two electrons I.

a b
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Slater determinants for a system with two electrons II.

Multi Slater determinants
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Spin states in the second quantization
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2-electrons in molecular orbitals

Ionic states!The Heitler-London wf. 31



The Heitler-London state v.s. the molecular 

orbitals

The true w.f. is close to a variational state with 0<a<1.

a is dependent on the inter-electron interaction or choice of 

the model (interaction parameters etc.).
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The Hubbard model : I.

↑ ↓

↓ ↑ ↓

↑

↑ ↓

t U
↑ ↓

1. Consider a system with atomic sites. Each site is assumed 

to have an orbital for the conduction electrons

2. Electrons can hop between neighboring sites by a transfer 

integral t.

3. Two electrons coming across at a site feels a repulsive 

interaction U.
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The Hubbard model : II.
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The Hubbard model : III.
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The Hubbard model : IV.

36



The Hubbard model : V.
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The Hubbard model : VI.
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2-site Hubbard model : I.

a b

t

U
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2-site Hubbard model : II.

40



2-site Hubbard model : III.

Crossover from weak 

coupling regime to strong 

coupling regime
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2-site Hubbard model : IV.

Weak coupling regime (MO)

Strong coupling regime

(HL)

The Hubbard gap

Energy scale of the 

AF kinetic exchange

Note: GS is always

a singlet state.

Singlet states

Triplet states

｝
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Concept of the Mott insulator

◼ Electron transfer from an orbital to an occupied 

orbital is prohibited by the Coulomb repulsion. 

This leads to an insulating state.

↓ ↑ ↑ ↑

↑ e↓ ↑ ↓

↓ ↑ ↓ ↑

J

The half-filled Hubbard model 

shows the Mott insulating ground 

state.

Formation of the Mott gap in 

the single particle excitation.

Mott gap

or 

Hubbard gap

U
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The kinetic exchange

◼ Effective interaction at around U=∞

↑ ↓

↓ ↑ ↓

↑ ↓t

U
↑ ↓↑ ↓

↑

P

P

Q

We have another 

process starting from 

transfer of the up 

spin moving to the 

neighboring site.
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2
SS Antiferromagnetic 

Heisenberg model.
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Superexchange interaction

◼ In the transition-metal oxides, there is a structure of M-O-M 

(M: transition metal, O: oxygen）. Along this structure, two 

localized spins couples via the superexchane through non-

magnetic oxygen atom.

OM M

Often, Mott insulator is formed.

→ M has an open d-shell.

px @ O

dx2-y2 @ M

dx2-y2 @ M

JAF
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The Kanamori-Goodenough rule
◼ Consider description by non-orthogonalized atomic 

orbitals (LCAO picture)

◼ The electron transfer is possible from O to M when two 

neiboring orbitals are not orthogonal.

◼ The sign of exchange interaction between d and p is,

◼ Ferromagnetic if two orbitals are orthogonal with each 

other,

◼ Antiferromagnetic if two orbitals are not orthogonal

◼ Occupation of d-orbitals are determined by the crystal 

field splitting and the Hund rule.

Following the above rule, we can determine the sign of 

superexchange in a qualitative manner.

P.W. Anderson reformulated the rule using the orthogonalized 

Wannier basis allowing the second quantization scheme.
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Exanple of antiferromagnetic

exchange
Non-orthogonal: finite transfer

J: antiferromagnetic

d
5

Mn2+ : 6S5/2

d
5

Mn2+ : 6S5/2

ps pp

Non-perturbative

ground state

Non-perturbative

States in exci-

tation

U

M MO

(1,4)

(2,3)

(1)

JF

JAF
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Various types of exchange 

interaction

◼ Direct exchange  :  (Cf. Heitler-London theory)

◼ Kinetic exchange :  (Cf. the Hubbard model)

◼ Super exchange

◼ Double exchange

◼ RKKY interaction

◼ Anisotropic exchange interaction

◼ Dzyaloshinskii-Moriya interaction

1. Exchange interactions except for the 1st one 

are effective interactions.

2. Effective interactions can be derived from a 

model with local interactions. 48



An almighty method

◼ Space of DFT models

◼ Distance : 

◼ Variational principle: DFVT by K.K. (2009).

LDA
GGA

Exact solution

Hartree-Fock

Gateaux derivative 

in the model space 

determines the 

direction to follow.

e-vicinity around 

exact solution

Phase transition 

lines

CASE I

CASE II

.1+− ii nn
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Super processes
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To have an initial state of correlated electron system, we may utilize

The upconversion Hamiltonian

which leads us to the convergent model series in the DFT model space.
Cf. K. Kusakabe, I. Maruyama, “Electronic state calculation method, electronic 

state calculation device, computer program”, PCT filed No. PCT/JP2011/068589, 

date 2011.8.18.

The van-

der-Waals 

interaction

The super-

exchange 

process

The super-

pair 

hopping 

process

Two & 

multi-

photon 

processes

…

Problems in static state Semi-classical & 

quantum 

dynamics

Magnetism Superconductivity
Quantum 

processes in QED!

50



Exchange scattering

51

( ) ( ) ( ) ( )  

( )
( )

( ) ( )
  ( ) ( ) .

'

'
'

2

,ˆˆ'ˆlim
2

ˆˆ

,ˆ
ˆˆˆ

1ˆˆˆ

333
2

3

'

3
2

,1

2

22,1

22,1













++
−

=




++D−=+=

=














−++
−+



 →

→

→

→→

rr
rr

rr

r
r

rrrr r

nrvdnE
nn

rrdd
e

n
v

Envrdrd
m

VTH

EHP
EHHH

PHHH

exteff

geffrri

ii

AA

BAAAA

i

B

AAAA

i

i

i

c
ii

c
iiii

i
c
iii

e







†



Ce 4f1 Ce 4f1

Ce 4f2
Ce 4f2

VB

CB

Ce 4f Ce 4f

MB @ EF
MB @ EF

VB

CB

Feynman diagram of exchange

Upconversion Hamiltonian with super processes

( )
ij fccfeffJ −

Evaluation of c-f exchange

AF effective exchange

⇒ The Kondo Screening



A unified picture of high-Tc materials

52

E E

EF
EF

Band structure of Tl-cupratesIsolated center band Embedded center band

Correlation enhanced Correlation enhanced

Empirical rule :

1. Embedded type preferable

2. Larger band width of center band preferable

3. Correlation induced by localized Wannier orbital preferable



Evaluation of matrix elements

53

Process B : A gap in un-correlated bands allows an approximated form as,

Process A, C : A correlator as energy increment by fluctuation in the number 

density of particles in the correlated band allows an approximated form via 

introduction of approximated Green’s functions (resolvents). 

Material Bloch diag. Bl off-diag. On-site n.n. off-site

Hg-comp. 18.6 eV at G 12.0 eV etc. 10.2 eV 6.4 eV

Tl-comp. 18.6 eV at G 5.4 eV etc. 8.3 eV 5.1 eV

4x4x1 mesh



Super process as two-particle G.F.

54

Effective interaction diagram leading 

the Bethe-Salpeter equation (BSE)

Symmetric form of the bare

Coulomb interaction

Bubble diagram by the  

polarization function with  

vertex correction (red part)

Ladder diagram



Derivation of screened interaction

55

Bare interaction term

Screened interaction term

Screening in c-RPA leｖel : Vertex correction can be considered.

Polarization function



Super process in general forms
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General operator expression

Phase-space dependent expression

A matrix element in an approximated expression corresponding to a 3rd order diagram



Electron-hole interaction in 

semiconductors
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The GW scheme
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Kohn-Sham equation
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Quasi-particle equation

Self-energy expression

The GW self-energy

The 0-th order Green function

Screened interaction

Screened interaction matrix

Dielectric function



GW as an approximation
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Thank you for your attention.

K. Kusakabe


