—_—

Introduction to large-scale
computing

KIRHE E

Institute for NanoScience Design, Osaka University

KRR ZF IV AL AT AL BEWNGER 57—
Masaaki Geshi

G
36" CMD workshop, supercomputer course
2020, February 17t" (Mon.)



Contents

Necessity of large-scale computing

Methods of the large-scale computing(Mainly
parallelization)

Today’s supercomputers
Future direction of large-scale computing



~“Necessity of large-scale computing

Systems we want to study have many atoms.

The computational cost increases N3, N°, or
exponentially.(N is the number of atoms, electrons,...)

Some physical quantities needs a huge computational
cost in spite of a small system(high accuracy).

There is scientific and/or industrial significance
obtained by large-scale computing.




Problems raised by large-scale —

'/ /ccﬁputing

Because of huge date must be handled, huge HDD and
fast 1O is needed. (~30PB in K computer, ~150PB in
Fugaku(post-K))

The problem of data analysis including visualization.

In some cases, data analysis costs more time than
computational time.



When we perform large-scale

muting,m

[t costs huge computational time.

In some cases, huge physical memory of CPU is

needed. '

In order to solve these problems, we have to improve
software codes to reduce the computational time and
memory.

Parallel computing is definitely necessary.



thsforﬁpg%ga le com

Speed-up techniques
e Vectorization—SIMD(many cores)
e Parallelization
e Order-N method(reduce the cost o(NP)—o(N)(p=1))
e Use of specialized machine or accelerator(GPU).
These are used in a code depending on one’s necessity.
The easiest way to speed up is to be able to realize it by

choosing proper compile options(vectorization, Automatic
parallelization, optimization,...).

Since it is not possible to speed up the code
automatically, we have to tune the code significantly.




- Single data Multiple data

SIMD

DATA

SISD

Single

instruction DATA

v
instruction ——

MISD

Multiple

instruction

MIMD

DATA

Instruction

1nstruct10n $




Vectorization——= i

A vector processor, or array processor, is a CPU that
implements an instruction set containing instructions
that operate on one-dimensional arrays of data called
vectors(row, column, or diagonal elements, etc...).

Vectorization is the method that we program a code to
construct regularly-arrayed data, and process the data
at a time by the vector CPU.

Vectorization realizes the reduction of a CPU time.

Today, this concept is included in SIMD.



)edeerpro

do i=1,imax

a(i) = c(i) +d()
b(i) = c(i) X d(i)

enddo

processing

a(1) =c(1) +d(v)
b(1) =c(1) Xd(1)
a(2) =c(2) +d(2)
b(2) = c(2) Xd(2)

a.l(imax) = c(imax) +d(imax)
b(imax) = c(imax) X d(imax)

We tune to increase the part
being processed at the deepest
do-loop in multi do-loop.

Scalar ‘ ’ Vector processing

a(1) =c(1) +d(v)
a(2) =c(2) +d(2)

«K_»

a” array
;1(imax) = c(imax) +d(imax)
b(1) = c(1) Xd(1)
b(2) = c(2) Xd(2) 1
: b” array

I.D(imax) = c(imax) X d(imax)



Realized by algorithm

—No approximation Ex.: Screened-KKR
Realized by approximation of Hamiltonian

— Approximation by localization of interaction. This type of
methods were actively studied in 9o’s.

e Roughly speaking, matrices are block-diagonalized or including
similar method.

e NXN—NXN,_,(fixed). If N increases, N, .,; not increase. (like
a tight-binding approximation)

e The accuracy of the approximation can be adjustable
depending on a required accuracy.

e One of the famous method is a Divide and conquer method (43
H#HBYE) . This is used in “OpenMX(Ozaki)”, “DC(Kobayashi
and Nakai)”, CONQUEST (Bowler, Miyazaki, Gillan)...



Parallelization =

This is the method to shorten the elapse time by
sharing task with more than one CPU without
changing the processing time of the task.

This is used to share big memory(array).

SIMD(Single instruction, multiple data),
MIMD (Multiple instruction, multiple data)




ElaRse time

W w www R AR A

cept of para

ranko ranki rank2 rank3 Redundant

WORKH PWORKE BVORKH BVORKH R uiniella g Elll
CPUs compute the

same calculation)

Parallel
computation
(different CPU
computes

Global Communication different

WORK2-1 WORKz2-2 WORK2-3 WOEK2-4

calculation)
i I 1 |

WORK3 WORK3 WORK3 WORK3 ERGEEULIE:
computation

Point: Increase parallelizable time and
decrease communication time.



- 3

_ Problems in para

® The ratio of parallelizable part in an elapse time on
1CPU sequential job is conclusive (Amdahl’ law).

* When we parallelize a software code, the data
communication between nodes must occur. If the
number of nodes increases, the communication time
between nodes costs more than the computational
time.(In the case of classical MD simulation, this is a
crucial problem.)



PRdahls Law

t 1 Elapse time of one job on 1 core

Speed up ratio Op =

thore Elapse time of one job on N core
f 1
(aP)max =t1>< t— = P
\ NCOI’E maxX (1_ P) —I— N—

core
P: parallelizable time in a sequential job

Upper bound of parallelizable ratio




Not parallelizable (1 sec.) parallelizable (99 sec.)

1+0.99=1.99 sec.(almost 50 times faster)

Even
obtain

100 processor

We have to decrease the non
parallelizable part as possible.

1000 processor

1+0.099=1.099 sec. (almost 91 times
faster)

Although we uses 1000

processors, the efficiency does
not become 100 times even!!!

We feel that the merit of parallelization
does not increase even if the number of
processors increases more and more.




/ /@JStafSO N-Barsioaw- sesea

Speed-up ratio <n+(1-n)s

n: the number of cores

S: the ratio of sequential computation(this part
cannot parallelize.)

In this law, the communication time
among nodes does not considered.



Indices of parallelization-eff

Strong scaling— The overall problem size (number of
atoms or electrons etc...) is fixed and the number of
processors is increased(based on Amdahl’s law).

Weak scaling— The problem size per processor is fixed
and the overall problem size is increased with
increasing processors(based on Gustafson’s law). The
processing of one processor is not changed. The ideal
situation is the computation time should be constant
even if the increase of the number of processors. If the
computation time increases, we can see the non
parallel part remains, and if the adjacent
communication time increases, the method of the
communication has a problem.

Reference:


http://www.r-ccs.riken.jp/library/event/tokuronB_180406.html

~ Example of

-~

20 ! ! ! ! ! ! !

18

16

14

12

10

Speed-up ratio o,

10 20 30 40 50 60 70 80 90 100
Number of CPU

Ordinary calculations using PC cluster




-~

500 ! ! ! ! ! ! ! ! !
e - e
e
> =
Y rrs e s b e = -
o
SEagp e e T S |
S
R e -
5=
gl R N S eaan B R |
»
mE e
e
ol L
: ; | i | | | | i P=0.90
0 100 200 300 400 500 600 700 800 900 1000
Number of CPU

Calculations using high-end PC cluster or supercomputers




~

P=0.9999

P=0.9998

P=0.9990

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

K computer: 705,024 cores

Number of CPU

Calculations using high-end supercomputers




Example of Amdahl

—

Speed up ratio o,

let06

900000

800000

700000

600000

500000

400000

300000

200000

100000

HH S 1a VWA

Calculations using top class supercomputers in the world
_ e . L=O.999999
= ’//./ -
— : e B 4 1P=0.99999
sSeEeaaEs--. . P=0.9999
0 le+06 2c¢+06 & 4¢+06 5¢+06 6¢+06 Te+06 8c+06 9c+06 7

Num ores
Summj#’ 2,397,824 cores

K computer: 705,024 cores

Sunway TaihuLight: 10,649,600 cores



/

~Even if you are just a user,

you need to be aware of the parallelization efficiency
of the software you use because you must effectively
use machine time(machine point, or cost(usage fee))
you can use.

you need to understand the characteristics of the
computer and make efforts to increase the calculation
efficiency.

you need to choose the best ggmpﬂg options to make

executable files. For Intel compller -xHost, -axCORE-AVX2,...
you need to choose the best for the best
performance of the software topobtain the best

scientific results.
In DFT calculations, E_,, k-point sampling,...

) cut’

Fundamentally a model size,...



MPI(message passing interface)

e The most versatile method.

e Both core-to-core and node-to-node communication can

be handled.

e The programming may not be easy.
OpenMP

e Only core-to-core communication.

e The programming may be easier than that of MPI.

PVM
HPF(High Performance Fortran)

(within non-complex case)

Now, these are seldom used.




program main
include (mpif.h)

call MPI_INIT(IERR)
call MPI_COMM_SIZE(MPI_COMM_WORLD,NPROCS,IERR)
call MPI_COMM_RANK(MPI_COMM_WORLD,MYRANK,IERR)

: ista, iend are the first array
call para range(1, n, nprocs, myrank, ista, iend———— pumbers allocated to each

do i=ista, iend ProCessor.
Each processor has only allocated elements of
a(i)=a(i)+value <« thearraya() .
enddo
call MPI_ALLREDUCE(a,a1,n_element, <———  Sum up all elements of the array a()
& MPI_DOUBLE_PRECISION, for all processors and distributed it
& MPI_SUM, MPI_COMM_WORLD, IERR) for all processors (all processors have

the same value of a()).

call MPI_FINALIZE(IERR) It is necessary to rewrite so as to calculate only the part

allocated to each node and to communicate the data.

end

Execution: mpirun (or mpiexec) -np 4(# of parallel) ./a.out




program main
implicit none
integer omp_get_thread_num,]
double precision z(100), a, x(100), y
do i=1, 100
z(i) = 0.0
x(i) = 2.0
end do
a=4.0
y=10

print *, “Welcome to the parallel world”
«— Directive of the start of parallel processing

!$omp parallel

For simple parallelization, we only need to insert
directives, so if we compile without parallelization
options the directives are commented out, so
basically we do not need to change the original
code.

print *, “Excuted on”, omp_get_thread_num()

call daxpy(z, a, x, y)
'$omp end parallel
end program main

subroutine daxpy(z, a, X, y)

integer [

double precision z(100), a, x(100), y

'$omp parallel do

doi=1,100
z(i)=a*x () +y

enddo

return

end

«—— Directive of the end of parallel processing

«— Do parallel of just below do loop

Execution: We do not use a special command.
Set environmental value

“OMP_NUM_THREADS=4" (# of parallel)




/OpenI\/IP

OpenMP can be parallelizable only for cores which
share the memory. We cannot make a large-scale
parallelization code by using OpenMP only.

The typical software codes which correspond to the
large-scale parallelization are tuned by using MPI for
1ts main part.

The role of OpenMP is to assist the speed up of the
code which is parallelized by using MPI.

Even if you do not develop the software code, you have
to know the details of the code in order to get
maximum performance.



The other environments to devel

parallel computing codes using GPU

easy

hard

CUFFT, CUBLAS,...

e Only call libraries to accelerate specific parts. The other parts do not be
accelerated.

OpenACC

e aprogramming standard for parallel computing developed by Cray,
CAPS, NVIDIA and PGI, designed to simplify parallel programming of
heterogenious CPU/GPU system.

e Very similar with OpenMP. In near future, OpenMP and OpenACC
may be merged.

e Fortran and C are supported.

CUDA

 aparallel computing platform and programming model created by
NVIDIA and implemented by the graphics processing units (GPUs)
that they produce. (only PGI Fortran can used.))

OpenCL

e aframework for writing programs that execute across heterogeneous
platforms consisting of central processing units (CPUs), graphics
processing units (GPUs), DSPs and other processors.



program picalc
implicit none
integer, parameter :: n=1000000
integer :: 1
real(kind=8) :: t, pi
pl = 0.0
I$acc parallel loop
do i=0, n-1
t = (i+0.5)/n
pi = pi + 4.0/(1.0 + t*t)
end do
Isacc end parallel loop
print *, 'pi=', pi/n
end program picalc

As the development
environment, the best results
can be obtained by improving
according to the message issued
by the compiler.

(The 14t lecture given by Dr. A. Naruse is useful.)



http://www.nvidia.co.jp/object/openacc-gpu-directives-jp.html
http://www.cms-initiative.jp/ja/events/2014-haishin
http://www.r-ccs.riken.jp/library/event/tokuronB_180406.html

Avoid memory wall problem(cache control)

e Computing power>data transfer from memory to
computing unit(CPU)—reuse the data on caches

Pipeline processing

Continuous access in do loop We have to know details of
hardware to make highly

optimized software codes.

loop unrolling

Divide data into blocks

Use the highly-optimized libraries

Please see these sites;
(only Japanese)


http://www.r-ccs.riken.jp/library/event/tokurona_170406.html
http://www.r-ccs.riken.jp/library/event/tokuronB_180406.html

m

SIrHOT VYV VWat—L4u :
R AT
Old computer Today’s computer
Computation The computation
performance performance

becomes extremely
fast (~a few GHz)

C PU (number of

clocks) was slow
5 (~10MHz)

i
IeH
HH

" The memory can
" not be accessed
until a certain
time passes

The fact that

® memory cannot be
accessed only for a

fixed time does not
change much.

Sending data from the memory to the CPU
is slow, but since the computing speed has
become extremely fast, the CPU is waiting
for a long time because of “the transfer
speed << compute speed” (supplement with
cache etc...).

Sending data from memory to the
CPU was slow, and the computation
speed was also slow, so it was not the
problem at “data transfer speed =
calculated speed”.

30



- Memory wall'problem =

/ Important!: Data transfer is the

most expensive a vels.

Today’s computer

Main memory

/J (- ; Lli fa)ihe i

\_
(

\_ ! L2 cacge !

Main memor

N7

Once the data is sent fro

the CPU, the code is progra

it as much as possible and red
number of calls to the memory as transfer from
possible. Data transfer between the f 1y to the CPU is 100

memory and the register or cache is fast, iy ag longer than access to the data on
but the capacity is small. :
the register.

If you do not understand and develop a acity
complex CPU configuration, the
performance will not be achieved

31



_High performance™Python—"

In place of Fortran and C / C ++, which have been used in
scientific computing in the past, HPC software development
has been advanced in the USA by using Python.

Python has overwhelming code readability compared to
Fortran and C / C ++.

—It is more likely that the maintenance of the code will be
continued without reading by experts.

We do not need to write everything in Python. If we know
that another language is faster than Python for a certain part,
we should use the part in the original. We combine Python
and the other language and improve the ease of
maintenance. (It is said that Python is a "glue language”
because it is a language that "sticks" programs in multiple
languages.)



mo'rder N tlght bmdmg method

5000 -

4000 -

3000 -

2000 -

1000

Elapse time[second/MD step]

A electronic
structure part

occupies 97.6%

of total elapse

time in a

sequential job.
High
parallelizability
is expected.

]MD step Bmkmg Repulswe Band structure  Geshi etal. (2003)




~Parallelization by means of MPI

We used MPI ALLREDUCE and MPI_BCAST to
communicate data. (Although this is quite simple and
includes useless data communication, the speed-up ratio
was good.)

We divided do-loop as outer as possible.

In this method, we can make all matrix elements as long as
we determine the atomic positions. These data determined
from 1 MD step are stored in CPU memory of all node.
Although almost all data are useless, we do not need to
communicate the data among nodes and there is no loss of
data communication.



function of the number of CPU

B192

4096

2048

—_ 1024 }

512

256

Elapse time|[sec.

=
==
.

[
(B
T

|
1 MD step —
Chuantum

Juam :
Classical ---#---
Booking

=
i

Geshi et al.(2003)

1 1
4 8

Number of CPU

1
16 32

SGI Origin 3800




Elapse ti S a functinof the
““number of CPU L

M. Geshi et al, ]. Phys. Soc. Jpn. 72,2880 (2003).

2192 T T T T T

4096

48 TRy 2,097,152 atoms

—
]
B

512

256

262.144 atoms =~

Elapse time[sec. |

=
&=

32 64

& 16
Number of CPU



_ Parallelization ra

o4

32

M. Geshi et al, ]. Phys. Soc. Jpn. 72,2880 (2003).

T T I T T -
32768 —+— e
262144 —8— e
2,097,152 —w— e
Amdahl's law b
complete

e

This is not enough today. To achieve the best
performance, it is necessary to increase the

parallelization efficiency to the limit.

1 ) 1 1
el e =
CFU

1
32 fnd

Number of CPU



Today’s supercomputers



/

~ Classes of parallel computers

Multicore computing

e a processor that includes multiple execution units ("cores") on
the same chip.

Symmetric multiprocessing

e a computer system with multiple identical processors that
share memory and connect via a bus.

Distributed computing

e adistributed memory computer system in which the processing
elements are connected by a network.(Cluster computing,
Massive parallel processing, Grid computing)

Specialized parallel computers

e Within parallel computing, there are specialized parallel
devices that remain niche areas of interest.
(GPGPU,Application-specific integrated circuits, Vector
processor5

From http://en.wikipedia.org/wiki/Parallel_computing



list (2019.11)(La

Rank

IBM %4

Cray#4

System

M POWER? 22C 3.07GHz, NVIDIA

band , IBM

est)

Rmax Rpeak Power

http://www.top500.0rg/

Cores [TFlop/s] [(TFlop/sl (kW]

2,414,592 148,600.0 200,794% 10,096

GPU
GPU

By the way, Oakforest-PACS is 15,

and TSUBAME3.o is 23. In total,
14 Japanese supercomputers are

in the top 100.

979,072 20,1587 414612 7,578 Intel XeOnPhi

(This architecture

Japan GPU was gone.)

2 X9 22C 3.1GHz, NVIDIA 1,972,480 94,6400 1257120 7.438
, IBM / NVIDIA / Mellanox
United States
3 Sunway TaihuLight - Sunwa W26010 260C 1.45GHz, 10,649,600 93,0146 1254339 15371
Sunway , NRCPC Ch'
Supercomputing Center in Wuxi lna
4 12C 2.2GHz, TH 4,981,760 61,4445 100,678.7 18,482
5 Frontera - Dell C642 la Aellanox 448,448 23,3164 38,7439
InfiniBand HDR, Dell EMC
& 387,872 21,2300 27,1543 2,384 GPU
7
8 391,680 19,8800 32,576.6 1,649
9 SuperMUC-NG - ThinkSystem 5D630, Xeon Platinurn 8174 24C 3.1GHz, 305,856 194766 268739
Intel Omni-Path , Lenovo
Leibniz Rechenzentrum
Germany
10 Lassen - |BM P 3.1GHz, Dual-rai 288,288 18,2000 23,0472

, NVIDIA Tesla V100, IBM / NVIDIA / Mellanox

United States

GPU

40



A software library for performing numerical linear
algebra on digital computers.

It is used for the performance assessment of
supercomputers. In practice, High-Performance

Linpack(HPL) is used.

[t makes use of the BLAS libraries for performing basic
vector and matrix operations.

The benchmark used in the LINPACK Benchmark is to
solve a dense system of linear equations.

This benchmark shows nothing more than
one side of performance of supercomputers.



'HPC Challenge —

The HPC Challenge benchmark consists of basically 7 tests:

HPL - the Linpack TPP benchmark which measures the floating point rate of
execution for solving a linear system of equations.

DGEMM - measures the floating point rate of execution of double precision
real matrix-matrix multiplication.

STREAM - a simple synthetic benchmark program that measures sustainable
memory bandwidth (in GB/s) and the corresponding computation rate for
simple vector kernel.

PTRANS (parallel matrix transpose) - exercises the communications where
pairs of processors communicate with each other simultaneously. It is a useful
test of the total communications capacity of the network.

?andoSnAccess - measures the rate of integer random updates of memory
GUPS

FFT - measures the floating point rate of execution of double precision
complex one-dimensional Discrete Fourier Transform (DFT).

Communication bandwidth and latency - a set of tests to measure latency and
bandwidth of a number of simultaneous communication patterns; based
on b_eff (effective bandwidth benchmark).

http://www.hpcchallenge.org/



" HPCG Benchmark(From 2034)"

The High Performance Conjugate Gradients (HPCG) Benchmark project is an effort to create
a new metric for ranking HPC systems. HPCG is intended as a complement to the High
Performance LINPACK (HPL) benchmark, currently used to rank the TOP500 computing
systems. The computational and data access patterns of HPL are still representative of some
important scalable applications, but not all. HPCG is designed to exercise computational and
data access patterns that more closely match a different and broad set of important
applications, and to give incentive to computer system designers to invest in capabilities that
will have impact on the collective performance of these applications.

HPCG is a complete, stand-alone code that measures the performance of basic operations in
a unified code:

eSparse matrix-vector multiplication.

*VVector updates.

*Global dot products.

eLocal symmetric Gauss-Seidel smoother.

eSparse triangular solve (as part of the Gauss-Seidel smoother).

*Driven by multigrid preconditioned conjugate gradient algorithm that exercises the key kernels
on a nested set of coarse grids.

*Reference implementation is written in C++ with MPl and OpenMP support.

http://www.hpcg-benchmark.org/index.html



- =

— -
= =

HPCG List for June 2019

Rank

TOP300
Rank

]

System

Summit - IBM Power Systern AC922, IBM POWERS
22C 3.07GHz, NVIDIA Volta GV100, Dual-rail
Mellanox EDR Infiniband [/system/179397), IBM
DOE/SC/Oak Ridge National Laboratory
[/site/48553)

United States

Sierra - IBM Power System 5%22LC, IBM POWERS
22C 3.1GHz, NVIDIA Velta GV100, Dual-rail
Mellanox EDR Infiniband [/system/179398], IBM /
NVIDIA / Mellanox

DOE/NNSA/LLNL [/site/49763)

United States

Rmax
Cores (TFlop/s)

2414592 148,6000

1,572,480 94,6400

ng

HPCG
(TFlop/s)

292575

1795.67

K computer, SPARCé4 Vilifx 2.0GHz, Tofu
interconnect (/system/177232), Fujitsu
RIKEN Advanced Institute for Computational
Science (AICS] [/site/50313)

Japan

705,024 10,510.0

602.74

Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz,
Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect
[/system/178410), Cray Inc.
DOE/NNSA/LANL/SNL [/site/50334)

United States

979,072 20,1387

54612

Al Bridging Cloud Infrastructure (ABCI) -
PRIMERGY CX2570 M4, Xeon Gold 6148 20C
2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR
[/system/179393), Fujitsu

National Institute of Advanced Industrial Science
and Technology [AIST) [/site/50762)

Japan

391,680 19,880.0

508.85

Piz Daint - Cray XC50, Xeon ES-2490v3 12C
2.6GHz, Aries interconnect , NVIDIA Tesla P100
[/system/177824), Cray Inc.

Swiss National Supercomputing Centre (CSCS)
[/site/50422)

Switzerland

387,872 212300

49698

‘Sunway TaihuLight - Sunway MPP, Sunway
SW26010 260C 1.45GHz, Sunway |/system/178764),
NRCPC

National Supercomputing Genter in Wuxi
[/site/50623)

China

10,649,600 93,014.6

£480.85

Nurion - Cray CS500, Intel Xeon Phi 7250 68C
1.4GHz, Intel Omni-Path [/system/179421), Cray
Inc

Kaorea Institute of Science and Technology
Information [/site/S0770)

Lares Seeis

570,020 13,9293

391.45

Oakforest-PACS - PRIMERGY CX1640 M1, Intel
Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path
|/system/{178932), Fujitsu

Joint Center for Advanced High Performance
Computing [/site/50673]

Japan

536,104 13,554.6

Cori - Cray XC40, Intel Xeon Phi 7250 48C 1.4GHz,
Aries interconnect [/system/178924], Cray Inc.
DOE/SC/LBNL/NERSC [/site/48429)

United States

622336 140147

355.44

Japan

Japan

China

Japan

44



HPCG List for November 2019

TOP500
Rank Rank

Rmax HPCG

System Cores [TFlop/s) (TFlop/s)

1

1

Summit - IBM Power System AC922, IBM POWERY 22C 3.07GHz, NVIDIA 2414592 148,600.0 2925.75
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM

DOE/SC/0ak Ridge National Laboratory

United States

e S D D
Sierra - IBM Power System AC922, IBM POWERY 22C 3.1GHz, NVIDIA 1,972,680 94,640.0 1795.67
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL

United States

Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7230 68C 979,072

1.4GHz, Aries interconnect , Cray/HPE

DOE/NNSA/LANL/SNL

United States
—

20,1387 3546.12

Al Bridging Cloud Infrastructure [ABCI) - PRIMERGY CX2370 M4, Xeon 391,680 19.880.0 508.85
Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu
Mational Institute of Advanced Industrial Science and Technology [AIST)

Japan

Piz Daint - Cray XC30, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, 387,872 21,2300 49698
NVIDIA Tesla P100, Cray/HPE

Swiss National Supercomputing Centre (CSCS)

Switzerland

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz,
Sunway , NRCPC

National Supercomputing Center in Wuxi

China

10,649,600 93,0146 480.85

14

Nurion - Cray CS300, Intel Xeon Phi 7230 68C 1.4GHz, Intel Omni-Path, 570,020 13,929.3 391.43
Cray/HPE

Korea Institute of Science and Technology Information

Korea, South

13

DOakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7230 68C 596,104
1.4GHz, Intel Omni-Path , Fujitsu

Joint Center for Advanced High Performance Cornputing

Japan

13,994.6 385.48

13

Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , 622,336 14,0147 355.44
Cray/HPE

DOE/SC/LBNL/NERSC

United States

10

17

Tera-1000-2 - Bull Sequana X1000, Intel Xeon Phi 7230 68C 1.4GHz, Bull 561,408 11,963.9 333.76
BXI11.2, Atos

Commissariat a 'Energie Atomigue [CEA]

France

a0
BEY

USA

Japan

China

Japan

USA

45



/ Green500(B TRANAII)X {

The purpose of the Greensoo0 is to provide a ranking of the
most energy-efficient supercomputers in the world. For
decades, the notion of "performance” has been
synonymous with "speed" (as measured in FLOPS). This
particular focus has led to the emergence of
supercomputers that consume egregious amounts of
electrical power and produce so much heat that
extravagant cooling facilities must be constructed to ensure
proper operation. In addition, the emphasis on speed as the
ultimate metric has caused other metrics such as reliability,
availability, and usability to be largely ignored. As a result,
there has been an extraordinary increase in the total cost of
ownership (TCO) of a supercomputer.

http://www.greensoo.org/



GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

Rank Rank
=

Syste_m

Core_s [TFlop/s] [LW] [GFlo Eslwat:s]

1 159 ABLFX prototyp 2GHz, 36,864 19995 118 16.876
Tofu interconnect D, Fujitsu
Japan Japan

2 420 NA-1 Xeon D-13 6C 1.3GHz band 1,271,040 1,303.2 80 16.236
EDR OMhz , PEZY Computing / Exascaler Inc.
Japan Japan

0% AIMUS - 10M Power bystem ALG2? ;- | 130,000 80430 510 10771
4 373 QM POWER® 20C 23,040 14660 94 15.374
00 SXM2 , IBM

3 1 2,414,592 148,600.0 10,096 14719
United States )

& 8 Al Bridging Cloud Infrastructure [Ab 391,680 19,8800 1,649 14423
oo Qo e Japan
Japan i

7 494 MareMostrum P% CTE - IBM Power System AC922, |BM 18,360 1,143.0 81 1413
Spain -

8 23 TSUBAMES.0 - 56 ICE XA_L memibbbmieo 11 E5- 26804 135,828 81250 792 13.704
4C 2.46Hz, Intel Omn -: SXM2, HPE
Japan . ) J p

9 1 PANGEA Il - IBM Power System _;‘:233.6291,024 17.860.0 1,367 13.063
GV100, IBM
France

10 1,572,480 94,6400 7438 12723

2 Sierra - IBM Power System AC922, IBM POWERS 22C

United States

<«— The prototype of Fugaku.

This list fluctuates
violently every time.
That is why
emphasis is placed
on the development
of this technology.

These machines balance
energy saving and
computing performance.

47


https://www.top500.org/green500/

XEHFSE

The Ministry of Education, Culture, Sports, Science and Technology

A—N\—2AVEa1—42 EE O
Supercomputer Development
( Supercomputer Fugaku )

7TV r—av0BE
Application Development

IB{LFBRIEFR R ﬁafgw
EREMREZ— | (om e Ty
RIKEN Ll N
Center for Computational Science Cozdesign Prg'its);:f;?fs %ﬁ;ﬁ;ﬁgg
ftm EJ%]EEE‘H (4 challenges )

o

N=F9x7I7—FTo0F ¢ . YATLY 7727 . FIVIVALERERRAS TS

Hardware / Architecture, System Software, Algorithms and Mathematics Libraries

BALSL>

VAT L
System
20145
FY2014
EANE
Basic Desi
0155 sic Design
FY2015
v
20165
FY2016 3R
sfF
Design and
Implementation
BhE (BE)
il E
Manufacturing,
Installation,
and Tuning
v
201445
Around 2021

Co-design (3 EE3RET)

N—FII7OERICELS. 7Oty BT
A IRVAT LV b T EGIRRE
Co-design of architectual design parameters of
CPU and system software components, which
hawve an impact on the hardwara.

AXIASRYATLY T M7 TOYS53 5
B, 7477 OR#lEsETDD,
TV r—avORITHEOALERS
Improvement of application perfarmance while
co-designing compilers, systemn software,
pragramming ervironment and libraries

tiem LicAmB e 2 —F o T F—v3
YOF 21— T EET| EHEGTS
Continue tuning of the target applications with
the alm to improve performance.

ﬁif?:l:_%ﬂ’]- 3P

ratior

TFINr—ay
Application

vl £ 2

Preparation

EEHR- ERmAE
Research and Study

HRIBEE

Implementation



https://www.r-ccs.riken.jp/jp/post-k/project.html

Armv8.2-A SVE 512bit

[ a— . 7. Syl
ELEREN\—FOTFNUT. g09Frui

ety hF—F70F v

2. FUITwF

48 + 27 AL HOT

_ 4 CMG (Core Memory Gro UMA noded= &)
E‘I‘ﬁ:l?ﬁ CMG (Core Memory Group, NUMA noded = &)

DP: 2.7+ TF, SP: 5.4+ TF, HP: 10.8 TF

L1D/core: 64 KIiB, 4way, 230+ GB/s (load), 115+ GB/s (store)

FrwIa L2/CMG: & MIB, 16way
L2/node: 3.6+ TB/s
L2/core: 115+ GB/s (load), 57+ GB/s (store)

HBM2 32 GiB, 1024 GB/s

A A= 4T Tofu Interconnect D (28 Gbps x 2 lane x 10 port)

PCIe Gen3 x16

7nm FinFET

SR LYI DT System software

| 7ous=>2m5  Programming Environment

HHTOG 5=

AOUT

TEAS1 75U

Linux

Mckernel

Fujitsu MPI (Based on OpenMPI), MPICH

LLIO

File 10

Application-oriented file 10 fibraries

Fortran2008 & Fortran2018H 7w

C11 & GNUHL3E(T - ClangihiEts

C++14 & C++170 71w + & GNUIEIELE - Clangihisftis

OpenMP 4.5 & OpenMP 5.08 7w

Java

XcalableMP

FPDPS

Python + Numpy + Scipy

BLAS, LAPACK, ScalAPACK, 55LII

SSL I (Fujitsu)

EigenEXA, Batched BLAS

| =+~ Storages
sms 1 level

o JO—JULTZAILDRAFLADF v
o FLRSFU—DFAILEATL
o HE-FOO-HILIFAILERFA
s SITOHEIFAILZATA

z s 27 ]evel

e Lustre—2ZMI 7L AT

s=zm 39 level
. PoHATREZ LT



/om%ris s

CPU Architecture

Cores

Peak DP performance

=2
§ Main Memory
Peak Memory Bandwidth
Peak Network Performance
Nodes
Rack

Peak DP performance

Process Technology

ABGAFX

(Armv8.2-A SVE
+Fujitsu Extension)

48
3.0720 TF
(3.3792 TF)
32 GiB
1024 GB/s
40.8 GB/s
384
1.2/1.3 PF
7 nm FinFET

SED HPCl > A7 LADIEEEZDF

(CETIRRKES
2020/01/27

SPARC64 VIlIfx

8
0.128 TF

16 GiB
64 GB/s
20 GB/s

102
< 0.013PF
45 nm

O Predicted Performance of 9 Target Applications

(structured grid Monte Carlo)

As of 2019/05/14
- Performance _ . -
Area Pricrity Issue Speedup over K Application Brief description
§ 1. Innovative computing
= infrastructure for drug 125x + GENESIS MD for proteins
% discovery
=} 2. Personalized and .
=
ﬁ preventive medicine 8x + Genomon Genome pr(_}r;essmg
< S (Genome alignment)
ZF using big data
3. Integrated simulation ;
T Earthquake simulator (FEM in
mg systems induced by 45x + GAMERA . ( -
2 5 O | earthquake and tsunami unstructured & structured grid)
FEER
392, Meteorological and Weather prediction system using
2o % : ’ NICAM+ -
ER global environmental 120x + LETKE Big data (structured grid stencil &
o prediction using big data ensemble Kalman filter)
5. New technologies for . }
energy creation, Molecular electronic simulation
m - 40x + NTChem .
Z conversion / storage, (structure calculation)
<o and use
~
g 2' ACICE'EM“:df Computational Mechanics
evelopment o -
@ innovative deailanEy 35x + Adventure | System fqr Large Scale Analy_sm
systems and Design (unstructured grid)
o 7. Creation of new
29 functional devices and Ab-initio simulation
33 30x + RSDFT . -
3 g 3 | high-performance (density functional theory)
§ = g matenals
=
3 2 3 | 8 Develo : :
= 3 pment of
22 innovative design and 25x + FFB Large Eddy Slglu'i;lon
@ production processes (unstructure gr )
2 9. Elucidation of the .
O m
- E fundamental laws and 25x% + LQCD Lattice QCD simulation
O 0
L]

evolution of the universe




=

ays

K computer was active for public use on 24hours/365 days
for general users.

e Different from K-computer, almost all the top class

machines of the topsoo ranking are for closed users and are
used for limited purposes.

The several rankings showed that K computer is almighty.

Users may optimize their code for K computer easier than
for the other ones(in the sense that it does not use a
special architecture like GPU.).

Fugaku will be operated in the same way as K-computer.




Future direction of large-scale
computing



“From the above rankings ——

From now on, both performance and energy-saving are
important (Summit makes energy saving and
computing performance highly compatible).

The trend of many-core system with not so high
frequency CPU is still going on. —Fugaku has 48 cores.

Or many supercomputers have GPU and realize energy
saving.
As GPU is prominent in the field of Al and machine

learning, this architecture will continue to be adopted in
the future.

However, I do not know whether supercomputers made
up of GPU are effective in all fields or not.

Probably, many supercomputers designed for data
analysis and Al will appear after now.



e Y e ——

Eftective performances measured by LINPACK or HPCG
benchmarks are not necessarily accordance with the
performance of our software codes. Usually, we spend so
much effort to get better performance on supercomputers
than ty{)ical PC clusters.

—Fugaku, will be constructed for getting better performance
for scientific application than benc%\mar K programs (Co-
design). (However, it may be the national mission to get the
first prize of top 500 for taxpayers.)

The effort goes beyond knowledge and techniques of
physicists, chemist, biologists,... We need those of computer
scientists and numerical mathematicians and need to
collaborate them.

Fugaku will be also a computer for general purpose. It may be
inferior to a dedicated machine.(cf. Anton (supercomputer for
performing classical MD) is 100~1000 faster than normal
supercomputers.)



Future directionlT —— —=

The tendency of architecture is multi cores or many
cores (including SIMD,GPU, ...).

It is not easy to use all cores effectively.

(As personal opinion, I think that I do not have to worry about using all the cores and it is
enough to get the best efficiency to obtain the calculation result.)

[s it reasonable and proper to devote many researchers’
effort to develop parallel efficiency? (very serious
problem!!!)

For DFT calculations, it may be difficult to speed-up
the software by using GPU without breakthrough.

We have to perform feasibility studies continuously to
follow a leading-edge architecture.



Future direction2 == "

The United States develops both architectures and
programming language frameworks. We should
contribute those.

It is too much hard-pressed for physicists and chemists
to cover computer science or numerical analysis.

—1it is needed to establish a system to promote to work
together with computational scientists and computer
scientists or experts of numerical analysis.

Still now, the guarantee of accuracy of calculation is
inadequacy. There is no standard for summation of data
from cores (threads) on MPI or OpenMP,... We must
treat it carefully, otherwise our calculation may become
meaningless.



Today’s amassed skills through K computer can be used
during the next 10 years. (In Japan, Fugaku project, and the
next project)

However, the development of supercomputer must be stop
in near future.(Prof. Hiraki said it was 2029. The reason is
the necessity of huge electric power, failure of Moors’ law,
etc...)

We should consider a new idea to get high performance of
our own calculations for both software and hardware as
soon as possible. We may undergo a paradigm shift before
2029.

For the time being, data transfer will continue to be the
most costly at all levels.

The research on quantum computers is also advancing, and
that will be a focus in the future.




&« 5 | @ htips://ma.issp.u-tokyo.ac.jp/en/ B 2+ H - @& O {
HEz i 3 BooRmarcs !I MSN Japan I! 555@:; I IEFwa~—4 [ Google Chrome 1 | Firefox Jw/ov— I 7: el o 57 i A0

V) What's MateriApps 7w Call for review

wow 24000 o M._?fenA o a

Inquiry / Application .
(G 9 {iqﬁ;g ',J A Portal Site of Materials Science Simulation » Detailed searcl

News [ Hands-on [ Event List of Apps Search Apps Keywords Research Showcase Concierge

Try the app without installing TMateriApps LIVE}

Search by category

Electronic structure Electronic structure olecular dymamics
{solid state physics) (quantum chemistry) Y

Visualization/modeling

Strong correlation/effective Data analysis/supplementary
models tool

Continuum models Database Integrated Environment

Machine learning

NeWS / Event News Event

This portal site provides the information of applications that are used in materials
science. You can find your desired application. “MateriApps LIVE” gives you an
environment to perform open-source software codes without any installation
process.



We should advance the development of human resources
to be able to use supercomputers and/or HPC machines
eftectively.

The relation between the ranking of top5o0 and the
software code we use is not necessarily clear. We need to
have the knowledge of the architecture of the
supercomputers and/or the HPC machines if we'd like to
maximize the performance of our software codes.

We should cultivate people who can develop the software
code.

We should cultivate people who can effectively use
scientific software codes to progress the researches.

(CMD-WS, distance learning etc...)



Masaaki Geshi Fditor

The Art of High

HERSORBHOHPCEIHT 1 HEHSORBOHPCHER 2

" | Performance
Computing for
Computational
Science, Vol. 1
Techniques of Speedup and
Parallelization for General Purposes

The Art ulegh
| Performance

Computing for
Computational
Smence \h::l 2

» These books are for developers.

 Integrates techniques for development on massively parallel computers

such as supercomputers.

» Lecture videos and texts are available on the following site(Japanese only).

60



https://www.r-ccs.riken.jp/library/event/tokuronA_2019.html
https://www.r-ccs.riken.jp/library/event/tokuronB_180406.html

	Introduction to large-scale computing�大規模計算序論
	Contents
	Necessity of large-scale computing
	Problems raised by large-scale computing
	When we perform large-scale computing,…
	Methods for large-scale computing
	Concept of Flynn’s taxonomy
	Vectorization
	Vector processing
	Order-N
	Parallelization
	Concept of parallelization
	Problems in parallelization
	Amdahl’s Law
	For examples, 
	Gustafson-Barsis’ law
	Indices of parallelization efficiency
	Example of Amdahl’s law(1)
	Example of Amdahl’s law(2)
	Example of Amdahl’s law(3)
	Example of Amdahl’s law(4)
	Even if you are just a user,
	Parallel programming languages
	Example of parallelization with MPI
	Example of parallelization with OpenMP
	The difference between MPI and OpenMP
	The other environments to develop parallel computing codes using GPU
	OpenACC(Open Accelerator)
	The cutting-edge techniques
	Memory wall problem
	スライド番号 31
	High performance Python
	Analysis of the computational time in order-N tight-binding method
	Parallelization by means of MPI
	Elapse time of each part as a function of the number of CPU
	Elapse time as a function of the number of CPU
	Parallelization ratio
	Today’s supercomputers
	Classes of parallel computers
	The latest top 500 supercomputer list (2019.11)(Latest)
	LINPACK
	HPC Challenge
	HPCG Benchmark(From 2014)
	HPCG ranking(2019.6)
	HPCG ranking(2019.11)(Latest)
	Green500(省エネスパコンリスト)
	Green 500(2019.11)(Latest)
	post-K “Fugaku”project on-going 
	Published specifications of Fugaku
	Comparison between K and Fugaku
	K computer is working on 24h/365days
	Future direction of large-scale computing
	From the above rankings
	However,…
	Future direction1
	Future direction2
	Future direction3
	MateriApps  
	Finally,
	Related texts

