Friday, 21 February 2020

at Graduate School of Science and Technology, Osaka University

Hands-on

First step in first-principles calculation.

- Precision Criterion for DFT simulation -

Hiroki Funashima¹ and Masaaki Geshi²

¹Department of Physics, Kyushu University ²Institute for Nano Science Design, Osaka University

Email: funashima.hiroki@phys.kyushu-u.ac.jp (Funashima), geshi@insd.osaka-u.ac.jp (Geshi)

Translational Symmetry

Bloch State, Bloch function

1-electron Schrödinger Equation

$$\left[-\frac{\hbar^2}{2m}\overrightarrow{\nabla}^2+V(\vec{r})\right]\psi(\overrightarrow{r})=E\psi(\vec{r})$$

Born - von Karman condition

Periodicity of Potential

$$V\left(\vec{r}-\vec{t}_n\right)=V(\vec{r})$$

eigenstate

 $O(\varepsilon|\vec{t}_n)\left(=\psi(\vec{r}-\vec{t}_n)\right)$ also is Eigenfunction whose eigenvalue is E

Bloch Theorem
$$O_{(\varepsilon|\vec{t}_n)}\psi_{\vec{k}}(\vec{r}) = e^{-i\vec{k}\cdot\vec{t}_n}\psi_{\vec{k}}(\vec{r}) \quad \text{Bloch condition}$$

$$\psi(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}\underline{u_{\vec{k}}}(\vec{r}) \quad \text{Bloch function}$$
 periodic function
$$u_{\vec{k}}\left(\vec{r}-\vec{t}_n\right) = u_{\vec{k}}\left(\vec{r}\right)$$
 Bloch state is characterized by \vec{k}

Born-Karmann Condition

Periodic Potential

$$V\left(\vec{r}-\vec{t}_n\right)=V(\vec{r})$$

same periodicity

Wave function must be written as Bloch Function

$$\psi_{\vec{k}}(\vec{r}) = \underline{e^{i\vec{k}\cdot\vec{r}}} \underline{u_{\vec{k}}(\vec{r})}$$
plane wave

periodic function
$$u_{\vec{r}}(\vec{r} - \vec{t}) = \underline{e^{i\vec{k}\cdot\vec{r}}}$$

$$u_{\vec{k}}(\vec{r} - \vec{t}_n) = u_{\vec{k}}(\vec{r})$$

 $\psi_{\vec{k}}(\vec{r})$ = (plane wave) x (periodic function)

complex mathematical functional form...

summation of simple mathematical function

Bloch function and basis set

$$\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{\vec{k}}(\vec{r})$$

How do we represent the periodic function?

$$\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}} \sum_{n} C_n \phi_n(\vec{r})$$
 basis set

e.g., planewave basis set

$$\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}} \sum_{\vec{G}} C_{\vec{G}} e^{i\vec{G}\cdot\vec{r}}(\vec{r})$$

cut-off energy is defined as

$$E_{\text{cut-off}} = \frac{\hbar^2 G_{\text{max}}^2}{2m_e}$$

$$\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}} \sum_{n} C_n \phi_n(\vec{r})$$

In generally speaking, Mathematics requires an infinite number of bases!

$$0 \le n \le \infty$$
 Ideal
$$0 \le n \le \underline{n_{max}}$$
 realistic calculation

genealogy of DFT calculation

Computational Experiment 1

To simplify, we try to visualize the plane wave expansion for Hydrogen Radial wave function.(In this case, angular part is neglected)

Representation for Hydrogen Radial Wave function as Summation of Plane wave Basis set

Reproducibility of Radial Wave function

Case: 3s orbital

Case: 4d orbital

Practice 1

relation between number of plane wave bases and reproducibility of radial wave function

(1) login to cmd2

ssh -Y stud??@cmd2.phys.sci.osaka-u.ac.jp

yourid

(2) launch App "rPlaneWaves" ~teac14/bin/rPlaneWaves &

(wait few second...)

Menu Window for rPlaneWaves

Actually, wave function has angular part, we are required much number of bases...

Computational Experiment 2

k-dependency and cutoff Energy dependency for real material in DFT calculation using FLAPW method(ABCAP code)

GaN

h-GaN(wurtzite structure)

Which is the most stable phase??

$$\Delta E_{\mathrm{total}} = 1.73910^{-2} (eV)$$
 (calc. FLAPW; DFT-LDA)

Does your calculation results have enough precision to compare total energy?

In these calculation, we vary *2 parameters* to determine the precision of DFT Calculation Results,

- number of k-point mesh(grid)
- · cutoff energy to expand wave function

We perform to the 2-type of calculation.

(1) check k-point mesh dependency(cutoff energy is static)

(2) check cutoff dependency(k-point mesh is static)

Insulator(semiconductor) vs. Metal

Precision for total energy (k-point mesh dependency)

Precision for total energy (cutoff energy)

Precision for magnetic moment (k-point mesh)

Precision for magnetic moment (cutoff energy)

small cell vs. large cell

translational lattice vector in real space

$$\overrightarrow{t}_n = n_1 \overrightarrow{t}_1 + n_2 \overrightarrow{t}_2 + n_3 \overrightarrow{t}_3$$

 $\vec{t}_1, \vec{t}_2, \vec{t}_3$:primitive translational lattice vector

primitive reciprocal vector

$$\vec{g}_1 = \frac{2\pi(\vec{t}_2 \times \vec{t}_3)}{\vec{t}_1(\vec{t}_2 \times \vec{t}_3)}$$
$$\vec{g}_2 = \frac{2\pi(\vec{t}_3 \times \vec{t}_1)}{\vec{t}_1(\vec{t}_2 \times \vec{t}_3)}$$

$$\vec{g}_3 = \frac{2\pi(\vec{t}_1 \times \vec{t}_2)}{\vec{t}_1(\vec{t}_2 \times \vec{t}_3)}$$

reciprocal lattice

$$\vec{g}_1 = l_1 \vec{g}_1 + l_2 \vec{g}_2 + l_3 \vec{g}_3$$

orthogonality

$$\vec{g}_{\mathfrak{i}}\cdot\vec{t}_{\mathfrak{j}}=2\pi\delta_{\mathfrak{i},\mathfrak{j}}$$

$$e^{i\vec{g}_{l}\cdot\vec{t}_{n}} = e^{2\pi ni} = 1 \quad (n:integer)$$

$$e^{-i(\vec{k}+\vec{g}_{l})\cdot\vec{t}_{n}} = e^{-i\vec{k}\cdot\vec{t}_{n}}$$

(periodicity in k-space)

Practice 2

relation between number of plane wave bases and reproducibility of radial wave function

(1) login to cmd2

(2) launch App "PrecSimu" ~teac14/bin/PrecSimu &

(wait few second...)

(3) target material

(7) plot graph (if you don't have DFT calculation results, you submit the job to calculate electronic structure)