

Thursday, 20 February 2020 at Graduate School of Science and Technology, Osaka University

ABCAP: Beginners Course

ABCAP (All electron Band CAlculation Package): FLAPW code

Noriaki Hamada^{1,2} and Hiroki Funashima³

¹Department of Physics, Tokyo University of Science ²Center for Spintronics Research Network, Osaka University ³Department of Physics, Kyushu University

Email: hamada@rs.tus.ac.jp (Hamada), funashima.hiroki@phys.kyushu-u.ac.jp (Funashima)

Purpose in this course

①Study the symmetry of crystal and electronic structure (symmetry operations).

②Study the symmetry of wavefunction (irreducible representations).

③Study the optical transition between valence and conduction bands (dipole allowed

1-1. Environment variables

Let's use "bash".

In order to set some environment variables, execute the following commands:

cat /home/CMD/teac02/Bash_envs >> ~/.bash_profile
source ~/.bash_profile

export /	ABCAP='/home/CMD/teac02/abcap1707'
export f export export export export #	⁻ C_TYPE='gen' FC='ifort' FO= MPIFC='mpif90' MPIFO=
export I export I #	PATH=.:\$HOME/bin:\$PATH HOSTNAME=`hostname`

contents: /home/CMD/teac02/abcap1707/Bash_envs

1-2. Preparation

Make a directory, e.g., *abc*, for the ABCAP calculation.

Copy a shell-script file, **Setnew.sh** to your directory, as follows:

cd ~
mkdir abc
cp \$ABCAP/samples/Setnew.sh abc/

• • •	👔 teac14@cmd2:~ — ssh cmd2 — zsh — ttys003	
	teac14@cmd2:~ — ssh cmd2	+
[teac14@cmd2 ~] [teac14@cmd2 ~] [teac14@cmd2 ~] [teac14@cmd2 ~]	\$ cd ~ \$ mkdir abc \$ cp \$ABCAP/samples/Setnew.sh abc/ \$ ■]
		1

The shell-script file **"Setnew.sh"** is used on <u>starting a new calculation</u>: Files needed for ABCAP calculation are copied from the directory, **\$ABCAP/samples/LaMnO3c_f_6/**.

Hands on DFT simulation

- Ferromagnetic Fe
- Nonmagnetic AIP

Enter a command, *Hqc*, which shows a procedure of the calculation.

The procedure consists of

- Edit a file, ???.data.
- Execute a shell-script file, ???.sh/ ???.qsub

Attention

In this workshop, you must replace "*.qc" to "*.qsub"

e.g.

ab_prp.qc -> ab_prp.qsub

<pre>[teac14@cmd2 Fe]\$ Hqc [0) (ab_prp.data, atom.data) ab_prp.qc (1) (ab_input.data) ab_in.qc (2) Hu (for +U calculation) (3) (ab_input.data) fl06.qc or fl06b.qc check.sh (4a) (bn_atps.data) bn_atps.sh (p3_atps.data) p3_atps.shghostview plot.ps</pre>	● ● ● teac14@cmd2:Fe — ssh cmd2 — zsh — ttys003
<pre>(0) (ab_prp.data, atom.data) ab_prp.qc (1) (ab_input.data) ab_in.qc (2) Hu (for +U calculation) (3) (ab_input.data) fl06.qc or fl06b.qc check.sh (4a) (bn_atps.data) bn_atps.sh (p3_atps.data) p3_atps.sh </pre>	[teac14@cmd2 Fe]\$ Hqc
<pre>(2) Hu (for +U calculation) (3) (ab_input.data) fl06.qc or fl06b.qc check.sh (4a) (bn_atps.data) bn_atps.sh (p3_atps.data) p3_atps.sh </pre>	(0) (ab_prp.data, atom.data) ab_prp.qc (1) (ab_input.data) ab_in.qc
<pre>(3) (ab_input.data) fl06.qc or fl06b.qc</pre>	(2) Hu (for +U calculation)
<pre>(4a) (bn_atps.data) bn_atps.sh (p3_atps.data) p3_atps.sh ghostview plot.ps (4b) <nosoi> (bnpl.data) bnpl.sh <nosoi> (angle.data) brzone.sh> brzone.ps <soi> cd bndraw.so (bndraw.data) bndraw.sh ghostview plot?.ps (4c) (bndraw.data) bndraw.sh ghostview plot.ps ghostview plot.ps (4d) (bn_pdos.data) bn_pdos.sh (p2_dos.data) p2_dos.sh ghostview plot?.ps (4e) cd force; make; cd/; force.sh </soi></nosoi></nosoi></pre>	(3) (ab_input.data) fl06.qc or fl06b.qc check.sh
<pre>(4b) <nosoi> (bnpl.data) bnpl.sh <nosoi> (angle.data) brzone.sh> brzone.ps <soi> cd bndraw_so (bndraw.data) bndraw.sh </soi></nosoi></nosoi></pre>	(4a) (bn_atps.data) bn_atps.sh (p3_atps.data) p3_atps.sh
<pre>(4c) (bndraw.data) bndraw.sh ghostview plot.ps (4d) (bn_pdos.data) bn_pdos.sh (p2_dos.data) p2_dos.sh ghostview plot?.ps (4e) cd force; make; cd/; force.sh </pre>	<pre>(4b) <nos0i> (bnpl.data) bnpl.sh <nos0i> (bnpl.data) brzone.sh> brzone.ps <s0i> (d bndraw_so (bndraw.data) bndraw.sh <s0i> cd bndraw_so (bndraw.data) bndraw.sh</s0i></s0i></nos0i></nos0i></pre>
(4d) (bn_pdos.data) bn_pdos.sh (p2_dos.data) p2_dos.sh (4e) cd force; make; cd/; force.sh (1') (ab_input.data) ab_kpgn.sh> (2)	(4c) (bndraw.data) bndraw.sh
(4e) cd force; make; cd/; force.sh (1') (ab_input.data) ab_kpgn.sh> (2)	ghostview plot.ps (4d) (bn_pdos.data) bn_pdos.sh (p2_dos.data) p2_dos.sh
(1') (ab_input.data) ab_kpgn.sh> (2)	<pre></pre>
	(1') (ab_input.data) ab_kpgn.sh> (2)
(1") (ab_input.data) ab_in2.sh> (2)	(1") (ab_input.data) ab_in2.sh> (2)
	[teac14@cma2 Fe]\$
[teac14@cma2 Fe]\$ ■	
[teac14@cma2 ⊧e]\$ ■	
[teac14@cma2 Fe]\$	

Edit the file, *ab_prp.data* by using the following information:

Body Centered Cubic (BCC) Structure

Rotational Operation

► x

Generally speaking, reflectional operation is written as production between space inversion and 2-hold rotation, C₂

rotational operation code for O_h and subgroup in TSPACE

identity	(1)	E	(x, y, z)	(25)	IE	(-x, -y, -z)	space inversion
α^2	(2)	C2x	(x, -y, -z)	(26)	IC2x	(-x, y, z)	
C_4^{-}	(3)	C2y	(-x, y, -z)	(27)	IC2y	(x,-y, z)	
	(4)	C2z	(-x, -y, z)	(28)	IC2z	(x, y, -z)	4-fold axis
	(5)	C31+	(z, x, y)	(29)	IC31+	(-z, -x, -y)	
	(6)	C32+	(-z, x, -y)	(30)	IC32+	(z,-x, y)	L_4 3-fold axis
	(7)	C33+	(-z, -x, y)	(31)	IC33+	(z, x, -y)	
α^+	(8)	C34+	(z, -x, -y)	(32)	IC34+	(-z, x, y)	-3
C_3^{\perp}	(9)	C31-	(y, z, x)	(33)	IC31-	(-y, -z, -x)	
	(10)	C32-	(y, -z, -x)	(34)	IC32-	(-y, z, x)	
	(11)	C33-	(-y, z, -x)	(35)	IC33-	(y,-z, x)	
	(12)	C34-	(-y, -z, x)	(36)	IC34-	(y, z, -x)	
	(13)	CZa	(y, x, -z)	(37)	IC2a	(-y, -x, z)	
	(14)	C2b	(-y, -x, -z)	(38)	IC2b	(y, x, z)	
a	(15)	C2c	(z,-y, x)	(39)	IC2c	(-z, y, -x)	
C_2	(16)	C2d	(-x, z, y)	(40)	IC2d	(x, -z, -y)	
	(17)	C2e	(-z, -y, -x)	(41)	IC2e	(z, y, x)	
	(18)	C2f	(-x, -z, -y)	(42)	IC2f	(x, z, y)	
	(19)	C4x+	(x,-z, y)	(43)	IC4x+	(-x, z, -y)	
	(20)	C4y+	(z, y, -x)	(44)	IC4y+	(-z, -y, x)	2-fold axis
α^{\pm}	(21)	C4z+	(-y, x, z)	(45)	IC4z+	(y, -x, -z)	×
C_4^-	(22)	C4x-	(x, z, -y)	(46)	IC4x-	(-x, -z, y)	
	(23)	C4y-	(-z, y, x)	(47)	IC4y-	(z, -y, -x)	
	(24)	C4z-	(y,-x, z)	(48)	IC4z-	(-y, x, -z)	

We can identify the space group as rotational, inversion and reflectional operation with translation operation.

production between group elements

$$\begin{array}{ll} \textbf{e.g.} & C_{2b} \cdot C_{2x} = ? \\ & (2) & C2x & (x, -y, -z) \\ & (14) & C2b & (-y, -x, -z) \end{array}$$

$$\mathcal{O}(C_{2b}) \cdot \mathcal{O}(C_{2x}) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \\ = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ = \mathcal{O}(C_{4z}^{-})$$

rotational operation code for \mathbf{O}_h and subgroup in TSPACE

identity	(1)	E	(x, y, z)	(25)	IE	(-x, -y, -z) inversio	n
α^2	(2)	C2x	(x, -y, -z)	(26)	IC2x	(-x, y, z)	
C_4^2	(3)	C2y	(-x, y, -z)	(27)	IC2y	(x, -y, z)	
	(4)	C2z	(-x, -y, z)	(28)	IC2z	(x, y, -z)	4-fold axis
	(5)	C31+	(z, x, y)	(29)	IC31+	(-z, -x, -y)	
	(6)	C32+	(-z, x, -y)	(30)	IC32+	(z,-x, y)	L_4 3-fold axis
	(7)	C33+	(-z, -x, y)	(31)	IC33+	(z, x, -y)	
α^+	(8)	C34+	(z, -x, -y)	(32)	IC34+	(-z, x, y)	
C_3^-	(9)	C31-	(y, z, x)	(33)	IC31-	(-y, -z, -x)	
	(10)	C32-	(y, -z, -x)	(34)	IC32-	(-y, z, x)	
	(11)	C33-	(-y, z, -x)	(35)	IC33-	(y, -z, x)	
	(12)	C34-	(-y, -z, x)	(36)	IC34-	(y, z, -x)	
	(13)	CZa	(y, x, -z)	(37)	IC2a	(-y, -x, z)	
	(14)	C2b	(-y, -x, -z)	(38)	IC2b	(y, x, z)	
a	(15)	C2c	(z,-y, x)	(39)	IC2c	(-z, y, -x)	
C_2	(16)	C2d	(-x, z, y)	(40)	IC2d	(x, -z, -y)	
	(17)	C2e	(-z, -y, -x)	(41)	IC2e	(z, y, x)	
	(18)	C2f	(-x, -z, -y)	(42)	IC2f	(x, z, y)	
	(19)	C4x+	(x,-z, y)	(43)	IC4x+	(-x, z, -y)	
	(20)	C4y+	(z, y, -x)	(44)	IC4y+	(-z, -y, x)	// 2-fold axis
α^{\pm}	(21)	C4z+	(-y, x, z)	(45)	IC4z+	(y, -x, -z)	××
C_4	(22)	C4x-	(x, z, -y)	(46)	IC4x-	(-x, -z, y)	,
	(23)	C4y-	(-z, y, x)	(47)	IC4y-	(z, -y, -x)	
	(24)	C4z-	(y,-x, z)	(48)	IC4z-	(-y, x, -z)	

group table (not including space inversion)

			C_2	x																					
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	2	2	1	4	3	8	7	6	5	10	9	12	11	24	21	20	18	23	16	22	15	14	19	17	13
	3	3	4	1	2	6	5	8	7	11	12	9	10	21	24	17	22	15	19	18	23	13	16	20	14
	4	4	3	2	1	7	8	5	6	12	11	10	9	14	13	23	19	20	22	16	17	24	18	15	21
	5	5	6	7	8	9	12	10	11	1	3	4	2	23	17	22	24	18	14	13	16	15	21	19	20
	6	6	5	8	7	11	10	12	9	3	1	2	4	20	15	16	14	19	24	21	22	17	13	18	23
	7	7	8	5	6	12	9	11	10	4	2	1	3	15	20	18	21	22	13	14	19	23	24	16	17
	8	8	7	6	5	10	11	9	12	2	4	3	1	17	23	19	13	16	21	24	18	20	14	22	15
	9	9	12	10	11	1	2	3	4	5	7	8	6	19	18	21	20	14	17	23	24	22	15	13	16
	10	10	11	9	12	2	1	4	3	8	6	5	7	22	16	14	15	21	23	17	13	19	20	24	18
	11	11	10	12	9	3	4	1	2	6	8	7	5	18	19	13	23	24	15	20	14	16	17	21	22
	12	12	9	11	10	4	3	2	1	7	5	6	8	16	22	24	17	13	20	15	21	18	23	14	19
C	13	13	21	24	14	22	19	18	16	20	23	15	17	1	4	11	8	12	7	6	9	2	5	10	3
C_{2b}	14	14	24	<u>21</u>	13	18	16	12	19	17	15	10	20	4	1	10	10	9	11	8	12	3	12	11	
			23	117	20	24	14	15	21	19	тο	Τõ	22		ю	L 1	שב	- 3	ΤT	9				2	Э
	10	10	10	10	22	22	1 -	20	17	21	1 4	24	12	12	10	c	1	0	2	2	4	0	12		11
	15 16 17	15 16	18	19 15	22	23	15	20	17	21	14 22	24	13 16	12	10	6	1	8 1	2	3	4 7 2	o 9 7	4	5	11
	15 16 17	15 16 17	18 20	19 15 22	22 23	23 14	15 24	20 21	17 13	21 18	14 22 21	24 19	13 16 24	12 8	10 5	6 3 7	1 12 2	8 1 5	2 9 1	3 11	4 7 2	8 9 7	4 10 2	5 4 °	11 6 12
	15 16 17 18 19	19 16 17 18 19	18 20 16 22	19 15 22 16	22 23 19 18	23 14 17 15	15 24 20 23	20 21 15 17	17 13 23 20	21 18 14 24	14 22 21 13	24 19 13 21	13 16 24 14	12 8 11 9	10 5 9	6 3 7 8	1 12 2 4	8 1 5 6	2 9 1 3	3 11 4 2	4 7 2 6 5	9 7 10	4 10 3	5 4 8 7	11 6 12 10
	16 17 18 19 20	16 17 18 19 20	18 20 16 22 17	19 15 22 16 23	22 23 19 18 15	23 14 17 15 13	15 24 20 23 21	20 21 15 17 24	17 13 23 20 14	21 18 14 24 22	14 22 21 13 18	24 19 13 21	13 16 24 14 19	12 8 11 9 6	10 5 9 11 7	6 3 7 8 2	1 12 2 4 9	8 1 5 6	2 9 1 3	3 11 4 2 10	4 7 2 6 5 3	9 7 10 12 5	4 10 3 1	5 4 8 7 1	11 6 12 10 8
	16 17 18 19 20 21	16 17 18 19 20 21	18 20 16 22 17 13	19 15 22 16 23 14	22 23 19 18 15 24	23 14 17 15 13 16	15 24 20 23 21 18	20 21 15 17 24 19	17 13 23 20 14 22	21 18 14 24 22 23	14 22 21 13 18 20	24 19 13 21 16 17	13 16 24 14 19 15	12 8 11 9 6 3	10 5 9 11 7 2	6 3 7 8 2 9	1 12 2 4 9 7	8 1 5 6 4	2 9 1 3 12 8	3 11 4 2 10 5	4 7 2 6 5 3 11	9 7 10 12 5 4	4 10 3 1 11 6	5 4 8 7 1	11 6 12 10 8 1
	13 16 17 18 19 20 21 22	16 17 18 19 20 21 22	18 20 16 22 17 13 19	19 15 22 16 23 14 18	22 23 19 18 15 24 16	23 14 17 15 13 16 20	15 24 20 23 21 18 17	20 21 15 17 24 19 23	17 13 23 20 14 22 15	21 18 14 24 22 23 13	14 22 21 13 18 20 24	24 19 13 21 16 17 14	13 16 24 14 19 15 21	12 8 11 9 6 3	10 5 9 11 7 2 12	6 3 7 8 2 9 5	1 12 2 4 9 7 3	8 5 6 4 10 7	2 9 1 3 12 8 4	3 11 4 2 10 5 1	4 7 2 6 5 3 11 8	9 7 10 12 5 4 11	4 10 3 1 11 6 2	5 4 8 7 1 12 6	11 6 12 10 8 1 9
	16 17 18 19 20 21 22 23	16 17 18 19 20 21 22 23	18 20 16 22 17 13 19 15	19 15 22 16 23 14 18 20	22 23 19 18 15 24 16 17	23 14 17 15 13 16 20 21	15 24 20 23 21 18 17 13	20 21 15 17 24 19 23 14	17 13 23 20 14 22 15 24	21 18 14 24 22 23 13 16	14 22 21 13 18 20 24 19	24 19 13 21 16 17 14 22	13 16 24 14 19 15 21 18	12 8 11 9 6 3 10 5	10 5 9 11 7 2 12 8	6 3 7 8 2 9 5 4	1 12 2 4 9 7 3 11	8 1 5 4 10 7 2	2 9 1 3 12 8 4 10	3 11 4 2 10 5 1 12	4 7 2 6 5 3 11 8 1	9 7 10 12 5 4 11 6	4 10 3 1 11 6 2 9	5 4 7 1 12 6 3	11 6 12 10 8 1 9 7
	16 17 18 19 20 21 22 23 24	16 17 18 19 20 21 22 23 24	18 20 16 22 17 13 19 15 14	19 15 22 16 23 14 18 20 13	22 23 19 18 15 24 16 17 21	23 14 17 15 13 16 20 21 19	15 24 20 23 21 18 17 13 22	20 21 15 17 24 19 23 14 16	17 13 23 20 14 22 15 24 18	21 18 14 24 22 23 13 16 15	14 22 21 13 18 20 24 19 17	24 19 13 21 16 17 14 22 20	13 16 24 14 19 15 21 18 23	12 8 11 9 6 3 10 5 2	10 5 9 11 7 2 12 8 3	6 3 7 8 2 9 5 4 12	1 12 2 4 9 7 3 11 5	8 5 6 4 10 7 2 11	2 9 1 3 12 8 4 10 6	3 11 4 2 10 5 1 12 7	7 2 6 5 3 11 8 1 10	9 7 10 12 5 4 11 6 1	4 10 3 1 11 6 2 9 8	5 4 7 1 12 6 3 9	11 6 12 10 8 1 9 7 4
	16 17 18 19 20 21 22 23 24	16 17 18 19 20 21 22 23 24	18 20 16 22 17 13 19 15 14	19 15 22 16 23 14 18 20 13	22 23 19 18 15 24 16 17 21	23 14 17 15 13 16 20 21 19	15 24 20 23 21 18 17 13 22	20 21 15 17 24 19 23 14 16	17 13 23 20 14 22 15 24 18	21 18 14 24 22 23 13 16 15	14 22 21 13 18 20 24 19 17	24 19 13 21 16 17 14 22 20	13 16 24 14 19 15 21 18 23	12 8 11 9 6 3 10 5 2	10 5 9 11 7 2 12 8 3	6 3 7 8 2 9 5 4 12	1 12 4 9 7 3 11 5	8 5 6 4 10 7 2 11	2 9 1 3 12 8 4 10 6	3 11 4 2 10 5 1 12 7	7 2 6 5 3 11 8 1 10	8 9 7 10 12 5 4 11 6 1	4 10 3 1 11 6 2 9 8	5 4 7 1 12 6 3 9	11 6 12 10 8 1 9 7 4
	16 17 18 19 20 21 22 23 24	16 17 18 19 20 21 22 23 24	18 20 16 22 17 13 19 15 14	19 15 22 16 23 14 18 20 13	22 23 19 18 15 24 16 17 21 G .	23 14 17 15 13 16 20 21 19	15 24 20 23 21 18 17 13 22	20 21 15 17 24 19 23 14 16	17 13 23 20 14 22 15 24 18	21 18 14 24 22 23 13 16 15	14 22 21 13 18 20 24 19 17	24 19 13 21 16 17 14 22 20	13 16 24 14 19 15 21 18 23	12 8 11 9 6 3 10 5 2	10 5 11 7 2 12 8 3	6 3 7 8 2 9 5 4 12	1 12 4 9 7 3 11 5	8 5 6 10 7 2 11	2 9 1 3 12 8 4 10 6	3 11 4 2 10 5 1 12 7	7 2 6 5 3 11 8 1 10	8 9 7 10 12 5 4 11 6 1	10 3 11 6 2 9 8	5 4 7 12 6 3 9	11 6 12 10 8 1 9 7 4
	16 17 18 19 20 21 22 23 24	16 17 18 19 20 21 22 23 24	18 20 16 22 17 13 19 15 14	19 15 22 16 23 14 18 20 13 C.	22 23 19 18 15 24 16 17 21 G .	23 14 17 15 13 16 20 21 19	15 24 20 23 21 18 17 13 22 <i>C</i>	20 21 15 17 24 19 23 14 16	17 13 23 20 14 22 15 24 18 C_{22}	21 18 14 24 23 13 16 15 x = -100	$ \begin{array}{c} 14\\22\\13\\18\\20\\24\\19\\17\\\end{array} $	24 19 13 21 16 17 14 22 20	13 16 24 14 19 15 21 18 23	12 8 11 9 6 3 10 5 2	10 5 9 11 7 2 12 8 3	6 3 7 8 2 9 5 4 12	1 12 4 9 7 3 11 5	8 5 6 4 10 7 2 11	2 9 1 3 12 8 4 10 6	3 11 4 2 10 5 1 12 7	7 2 6 5 11 8 1 10	8 9 7 10 12 5 4 11 6 1	10 3 1 11 6 2 9 8	5 4 7 12 6 3 9	11 6 12 10 8 1 9 7 4

	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
1	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
2	26	25	28	27	32	31	30	29	34	33	36	35	48	45	44	42	47	40	46	39	38	43	41	37
3	27	28	25	26	30	29	32	31	35	36	33	34	45	48	41	46	39	43	42	47	37	40	44	38
4	28	27	26	25	31	32	29	30	36	35	34	33	38	37	47	43	44	46	40	41	48	42	39	45
5	29	30	31	32	33	36	34	35	25	27	28	26	47	41	46	48	42	38	37	40	39	45	43	44
6	30	29	32	31	35	34	36	33	27	25	26	28	44	39	40	38	43	48	45	46	41	37	42	47
7	31	32	29	30	36	33	35	34	28	26	25	27	39	44	42	45	46	37	38	43	47	48	40	41
8	32	31	30	29	34	35	33	36	26	28	27	25	41	47	43	37	40	45	48	42	44	38	46	39
9	33	36	34	35	25	26	27	28	29	31	32	30	43	42	45	44	38	41	47	48	46	39	37	40
10	34	35	33	36	26	25	28	27	32	30	29	31	46	40	38	39	45	47	41	37	43	44	48	42
11	35	34	36	33	27	28	25	26	30	32	31	29	42	43	37	47	48	39	44	38	40	41	45	46
12	36	33	35	34	28	27	26	25	31	29	30	32	40	46	48	41	37	44	39	45	42	47	38	43
13	37	45	48	38	46	43	42	40	44	47	39	41	25	28	35	32	36	31	30	33	26	29	34	27
14	38	48	45	37	42	40	46	43	41	39	47	44	28	25	34	30	33	29	32	36	27	31	35	26
15	39	47	41	44	48	38	37	45	43	40	42	46	31	30	25	34	27	35	33	28	32	36	26	29
16	40	42	43	46	47	39	44	41	45	38	48	37	36	34	30	25	32	26	27	31	33	28	29	35
17	41	44	39	47	38	48	45	37	42	46	43	40	32	29	27	36	25	33	35	26	31	34	28	30
18	42	40	46	43	41	44	39	47	38	45	37	48	35	33	31	26	29	25	28	30	34	27	32	36
19	43	46	40	42	39	47	41	44	48	37	45	38	33	35	32	28	30	27	26	29	36	25	31	34
20	44	41	47	39	37	45	48	38	46	42	40	43	30	31	26	33	28	36	34	27	29	35	25	32
21	45	37	38	48	40	42	43	46	47	44	41	39	27	26	33	31	34	32	29	35	28	30	36	25
22	46	43	42	40	44	41	47	39	37	48	38	45	34	36	29	27	31	28	25	32	35	26	30	33
23	47	39	44	41	45	51	38	48	40	43	46	42	29	32	28	35	26	34 20	36	25	30	33	27	31
24	48	38	37	45	43	46	40	42	39	41	44	47	26	27	36	29	35	30	31	34	25	32	33	28

ab_prp.data for bcc ferromagnetic Iron

● ● ● ab_prp.data (~/abc/Fe) - VIM — ssh cmd2 — zsh — ttys003
abcap-ab_prp.data 🗧
0 !jpr
Fe body centered cubic ferromag.
lattice parameter -2*3*4*5*6*7
2.87 2.87 2.87 90.0 90.0 90.0 [a,b,c[A], alpha,beta,gamma[degree]
space group -2
3 3 3 1 1talm, 11((-1(r),0(n),1(s),2(t),3(b),4(c),5(a),6(b)),ngen,1nv(0)
5 0 1 0 1 0 1 igen, jgen(2,3)
$25 \circ 1 \circ 1 \circ 1$ (101) (101) (101)
kinds of atoms
1 l# of kinds
1 0.0 0.0 0.0 Fe !jpos,position,name
magnetic state -2*3*5*6*7
2 !jmag0 !noS0:(0(N),1(AF),2(M)), S0:(20(N),21(AF),22(M))
1 1 2 1 2 1 2 !igen,jgen(2,3) for AF
totally symmetric basis set -3*4*5*6*7
24.0 6 !cut-off energy[Hr],Lmax
k-points (# of division)3*4*5*7
6 6 6 !nx,ny,nz
1teration
4 6 0.05 0.05 imetroa, n-metroa, pmix, amix
······································
~
~
~
~
NORMAL ab_prp.data unix iso-2022-jp no 1/23: 17
"ab_prp.data" [converted] 23L, 1490C

In this workshop, you execute "ab_prp.qsub" instead of "ab_prp.qc"

Execute *ab_prp.qsub*:

This is used for executing *ab_prp.sh*. It makes a file, *ab_input.data*, which is a real input file for the ABCAP calculation.

The file, *ab_input.data*, is made from the informations of *ab_prp.data* and *atom.data*. The *atom.data* file is a data base for atoms from H(hydrogen) to U(uranium).

2. initial charge density, potential and etc...

• • •	teac14@cmd2:	Fe — ssh cm	d2 — zsh	— ttys003	
[[teac14@cmd2 F	e]\$ Hqc	ia@rcs16.~ -	ZSII —	zsn — ttysooz] 🗖
(0) (ab_prp.da (1) (ab_input.	ta, atom.data) data)	ab_prp.qc ab_in.qc			

In *ab_in.qsub*, the following programs run.

- *ab_in.exe*: checks: the crystal structure, and makes totally-symmetric basis functions.
- *ab_inch.exe*: makes the initial charge density as the superposition of atomic charge densities.
- *ab_kpgn.exe*: generates the k points used in the calculation.
- *ab_size.exe*: estimates the size of calculation.
- *ab_ospw.exe*: calculates the overlap integral among the totally symmetric basis functions.
- *fl_dm00.exe*: sets the initial value of the local density matrix. (diagonal elements are 1/2)

3. Self-Consistent Field(SCF) Calculation

Iteration for the self-consistent calculation. Edit *fl06.sh* and set the number of iteration at the parameter, *ITER_MAIN*.

	• • fl06.csh (~	/abc/Fe) - VIM — ssh c	md2 — zsh — ttys003		
contents of " fl06.sh"	<pre>#1/bin/csh -f #PBS -q PCC #PBS -l cpunum_job=1,elapsti #PBS -o fl06.out #PBS -e fl06.err if(\$?PBS_0_WORKDIR) then cd \$PBS_0_WORKDIR endif</pre>				
	<pre># set ITER_MAIN = 8 set ITER_PLUS = 1 # echo \$PWD</pre>				
	date echo \$HOSTNAME date echo ======	>>& iter.log >& Current >>& Current >>& Current			
	<pre>unlimit datasize rm -f f_energy.dta \$ABCAP/bin/jmag0.exe set JMAG0=`cat jmag0.dta` set JMAG00=`expr \$JMAG0 / 10 echo 'jmag0=`\$JMAG0</pre>				
	NORMAL fl06.csh		unix iso-2022-jp tcsh 📕	8/138: 5	0

In *fl06.qsub*, the following programs run:

- *fl_pot.exe*: makes the potential from the charge density.
- *fl_potuj.exe*: makes the +*U* potential from the local density matrix.
- · fl_bnd.exe: calculates eigen functions through a standard diagonalization.
- fl_chg.exe: determines the Fermi energy and calculate the charge density from the eigen functions.
- fl_dmmx.exe: calculates the local density matrix.
- · fl_pot.exe: calculates the total energy. fl_mx5.exe calculates the next input of
- · charge density.

Here, *fl_ptuj.exe* works only with lda+u> 0.

🖲 😑 🛑 teac14@cmd2:Fe — ssh rl — zsh — ttys003	
teac14@cmd2:Fe — ssh rl	+
[teac14@rl]~/abc/Fe% fl06.qsub mm: cannot remove `fl06.e*': No such file or directory mm: cannot remove `fl06.o*': No such file or directory Your job 69576 ("fl06") has been submitted [teac14@rl]~/abc/Fe%	j 🗏

A summary on each cycle of the iterative calculation is written in the file, *iter.log*. The summary is shown on the display by the command, *check.sh*

● ● ● teac14@cmd2:Fe — ssh cmd2 — zsh — ttys003	
[[teac14@cmd2 Fe]\$ check.sh]	
electron1: Fe 6.264 electron1: Fe 5.994 electron1: Fe 6.071 electron1: Fe 6.181 electron1: Fe 6.176	Metal M_s (μ_B / atom)Iron2.2Cobalt1.7Nickel0.6
moment 1: Fe 2.532 moment 1: Fe 2.281 moment 1: Fe 2.240 moment 1: Fe 2.204	Gd 6.8 Dy 10.2
magnetic moment= 2.545490 per cell magnetic moment= 2.286433 per cell magnetic moment= 2.237164 per cell magnetic moment= 2.193178 per cell	magnetic moment per atom
<pre>magnetic moment= 2.191463 per cell bandgap [eV] = 0.000000 : no gap bandgap [eV] = 0.000000 : no gap bandgap [eV] = 0.000000 : no gap fermi-en= 0.305121 dos= 27.579701 int.dos= 8.000000 Whole unit fermi-en= 0.305537 dos= 27.670211 int.dos= 8.000000 Whole unit fermi-en= 0.305537 dos= 27.670211 int.dos= 8.000000 to 1000000 Whole unit fermi-en= 0.305537 dos= 27.670211 int.dos= 8.000000 to 1000000 Whole unit fermi-en= 0.305537 dos= 27.670211 int.dos= 8.000000 to 100000 to 1000000 to 10000000 to 1000000 to 10000000 to 1000000 to 10000000 to 1000000 to 1000000 to 1000000 to 1000000 to 10000000 to 10000000 to 1000000 to 10000000 to 10000000 to 10000000 to 100000000 to 10000000 to 10000000000</pre>	atomic configuration for Fe Fe: [Ar] (3d) ⁶ (4s) ² core electron valence electron total valence electrons: 6+2 = 8
total energy [Hr] = -1270.500939 total energy [Hr] = -1270.507999	haracter of valence electrons
<pre>ispin= 1 whole cell = 0.694335D-02 ispin= 2 whole cell = 0.167671D-01 ispin= 1 whole cell = 0.167733D-01 ispin= 2 whole cell = 0.404381D-02 ispin= 2 whole cell = 0.966702D-02 ispin= 2 whole cell = 0.219177D-02 ispin= 1 whole cell = 0.195018D-02 ispin= 1 whole cell = 0.181931D-02 ispin= 2 whole cell = 0.125072D-02 [teac14@cmd2 Fe]\$</pre>	3d electron: localized 4s electron: itinerant electron is expanded at the interstitial region, $n_e=6.0+\delta$

4-1. Drawing the Crystal Structure

- ① Edit *bn_atps.data*. Give the region of drawing in the file.
- 2 Run *bn_atps.sh* and *p3_atps.sh*.
- ③ A postscript file, *plot.ps*, is obtained.

 u_2

4-1. Drawing the band structure (e-k curve)

- ① Edit *bnpl.data* and *a_bnpl.data*. Give paths in the k-space to be drawn.
- 2 Run *bnpl.sh*.
- ③ plot.ps is obtained for the nonmagnetic case (jmag=0) or the

antiferromagnetic case (jmag=1); plot1.ps and plot2.ps are obtained for the

magnetic case (jmag=2).

4-2. Drawing the k-space path and BZ

① Run *brzone.sh*.

2 *brzone.ps* is obtained, which shows the k-space path in the e-k curve.

4-2. Drawing the Density of States(DOS)

- ① Edit *bn_pdos.data*. Give the energy region to be drawn.
- 2 Run *bn_pdos.sh*.
- ③ Edit *p2_dos.data*. Select the total DOS, the s, p, d, and f partial DOS.
- 4 Run *p2_dos.sh*
- ⑤ *plot.ps* is obtained for the nonmagnetic case (jmag=0) or the antiferromagnetic case

(jmag=1); *plot1.ps* and *plot2.ps* are obtained for the magnetic case (jmag=2).

00: only inside muffin-tin sphere, pdos is underestimated. Because we should consider muffin-tin region and interstitial region.

10: interpolated pdos, but sometimes pdos is overestimated.

The *k* group

1. irreducible representation for *k* group

(1) Edit *ab_irep.data*: Give k points to be calculated.

numerator

(2) Run *ab_irep.sh*.

• • •	teac14@cmd2:Fe — ssh cmd2 — zsh — ttys003	
[teac14@cmd2 Fe]\$ =ab_irep= [teac14@cmd2 Fe]\$./ab_irep.sh] 🗆
		0

(3) ab_irep.log.

character of irreducible representation (case:Fe)

point group of k(case:Fe)

k el	= (0 0 ements of pk-grou	0)/ p k=	00	L 0/	-			1									
1 :	e xyz	0/1	0/1	0/1	0	0	0		25	25	ie -x-y-z	0/1	0/1	0/1	0	0	0
2 2	c2x x-y-z	0/1	0/1	0/1	0	0	0		26	26	ic2x -x y z	0/1	0/1	0/1	0	0	0
3	c2y -x y -z	0/1	0/1	0/1	0	0	0		27	27	ic2y x-y z	0/1	0/1	0/1	0	0	0
4 4	c2z -x -y z	0/1	0/1	0/1	0	0	0		28	28	ic2z x y-z	0/1	0/1	0/1	0	0	0
5 !	c31+ z x y	0/1	0/1	0/1	0	0	0		29	29	ic31+ -z -x -y	0/1	0/1	0/1	0	0	0
6 (c32+ -z x -y	0/1	0/1	0/1	0	0	0		30	30	ic32+ z -x y	0/1	0/1	0/1	0	0	0
7	′ c33+ -z -x y	0/1	0/1	0/1	0	0	0		31	31	ic33+ z x -y	0/1	0/1	0/1	0	0	0
8 8	c34+ z -x -y	0/1	0/1	0/1	0	0	0		32	32	ic34+ -z x y	0/1	0/1	0/1	0	0	0
9 9	c31- y z x	0/1	0/1	0/1	0	0	0		33	33	ic31y -z -x	0/1	0/1	0/1	0	0	0
10 10) c32- y-z-x	0/1	0/1	0/1	0	0	0		34	34	ic32y z x	0/1	0/1	0/1	0	0	0
11 11	. c33y z -x	0/1	0/1	0/1	0	0	0		35	35	ic33- y-z x	0/1	0/1	0/1	0	0	0
12 17	c34y -z x	0/1	0/1	0/1	0	0	0		36	36	ic34- y z -x	0/1	0/1	0/1	0	0	0
13 13	c2a y x -z	0/1	0/1	0/1	0	0	0		37	37	ic2a -y -x z	0/1	0/1	0/1	0	0	0
14 14	· c2b -y -x -z	0/1	0/1	0/1	0	0	0		38	38	ic2b y x z	0/1	0/1	0/1	0	0	0
15 1	c2c z-y x	0/1	0/1	0/1	0	0	0		39	39	ic2c -z y-x	0/1	0/1	0/1	0	0	0
16 10	c2d -x z y	0/1	0/1	0/1	0	0	0		40	40	ic2d x -z -y	0/1	0/1	0/1	0	0	0
17 1	′ c2e -z -y -x	0/1	0/1	0/1	0	0	0		41	41	ic2e z y x	0/1	0/1	0/1	0	0	0
18 18	c2f -x -z -y	0/1	0/1	0/1	0	0	0		42	42	ic2f x z y	0/1	0/1	0/1	0	0	0
19 19) c4x+ x -z y	0/1	0/1	0/1	0	0	0		43	43	ic4x+ -x z -y	0/1	0/1	0/1	0	0	0
20 20) c4y+ z y -x	0/1	0/1	0/1	0	0	0		44	44	ic4y+ -z -y x	0/1	0/1	0/1	0	0	0
21 23	. c4z+ -y x z	0/1	0/1	0/1	0	0	0		45	45	ic4z+ y-x-z	0/1	0/1	0/1	0	0	0
22 27	c4x- x z -y	0/1	0/1	0/1	0	0	0		46	46	ic4xx -z y	0/1	0/1	0/1	0	0	0
23 23	с4уz у х	0/1	0/1	0/1	0	0	0		47	47	ic4y- z -y -x	0/1	0/1	0/1	0	0	0
24 24	- c4z- y -x z	0/1	0/1	0/1	0	0	0		48	48	ic4zy x -z	0/1	0/1	0/1	0	0	0

Irreducible representation at Γ (case:Fe) IMR NO(1 DIMENSION= 1 MATRIX REPRESENTATION 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748 1 IMR NO 7 DIMENSION= 3 MATRIX REPRESENTATION 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748 7 IMR NO (9)DIMENSION= 2 MATRIX REPRESENTATION 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748 9 1 2 0 0 0 0 0 0 0 0 0 0 0 + + V W V W W V + W V + 0 0 0 0 0 0 0 0 0 0 0 0 + + V W V W W V + W V + 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 + + W V W V V W + V W + 0 0 0 0 0 0 0 0 0 0 0 0 + + W V W V V W + V W + Example: IR=9, symmetry operation index = 20 "+" indicates "1", "-" indicates "-1" "V" indicates " $\exp\left(\frac{2\pi}{3}i\right)$ " $\begin{bmatrix} 0 & V \\ W & 0 \end{bmatrix} = \begin{bmatrix} 0 & \exp(2\pi i/3) \\ \exp(4\pi i/3) & 0 \end{bmatrix}$ "W" indicates " $\exp\left(\frac{4\pi}{3}i\right)$ " respectively.

character table of Irreducible representation at **F**

$\begin{array}{c} 1 \ : \ (\ 1.00 \\ (\ 1.0$	0.00) (1 0.00) (1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1.00 (1.00	0.00) (0.00) ((1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	(1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)
7 : (3.00 (0.00 (1.00 (-1.00 (-1.00 (0.00 (0.00 (1.00 (-1.00	0.00) (-1 0.00) (0 0.00) (0 0.00) (1 0.00) (-1 0.00) (-1 0.00) (0 0.00) (1 0.00) (1 0.00) (1 0.00) (-1	.00 0.00) .00 0.00) .00 0.00) .00 0.00) .00 0.00) .00 0.00) .00 0.00) .00 0.00)	<pre>(-1.00 (0.00) (1.00) (1.00) (-1.00) (-1.00 (0.00) (1.00) (-1.00) (-1.00</pre>	0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) ((-1.00) (0.00) (1.00) (-1.00) (-1.00) (0.00) (0.00) (1.00) (-1.00)	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	(0.00) (0.00) (1.00) (-1.00) (3.00) (0.00) (0.00) (1.00) (-1.00)	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)

$$\begin{cases} E_g : d\gamma(x^2 - y^2, 3z^2 - r^2) \\ T_{2g} : d\varepsilon(xy, yz, zx) \\ A_{1g} : s \end{cases}$$

Cubic Crystal Electric Field(CEF) for 3d

Optical property for semiconductor

· AIP

non-symmorphic(非共型) 157(screw: 6tth and glide:陳進 + 2)

symmorphic(共型) 73 space group

In symmorphic case, most of $\left(\alpha \mid \overrightarrow{b}'\right)$

are screw operation or glide operation

Example: non-symmorphic crystals

5.Optical property

$$\frac{\epsilon_{ij}(\omega)}{\epsilon_0} = \delta_{ij} + \frac{e^2}{\epsilon_0 m \omega^2} \left\{ \frac{1}{m} \chi_{ij}(\omega) - n \right\}$$
$$\chi_{ij}(\omega) = 2 \sum_{cv} \left\{ \chi_{ij}^{cv}(\omega + i\eta) + \chi_{ij}^{cv}(-\omega + i\eta)^* \right\}$$
$$\chi_{ij}^{cv}(z) = -\frac{1}{N} \sum_{\boldsymbol{k}} \frac{f_{\boldsymbol{k}v} \left(1 - f_{\boldsymbol{k}c}\right) \langle v \mid p_i \mid c \rangle \langle c \mid p_j \mid v \rangle}{z - (\varepsilon_{\boldsymbol{k}c} - \varepsilon_{\boldsymbol{k}v})}$$

For metallic case, we add the Drude term,

$$\frac{i}{\omega} \frac{\sigma_{ij}(0)}{1 - i\omega\tau} = \frac{-1}{\omega} \frac{\sigma_{ij}(0)/\tau}{\omega + i/\tau}$$
$$\sigma_{ij}(0)/\tau = \frac{e^2}{\epsilon_0} \langle v_i v_j \rangle_F D\left(\varepsilon_F\right)$$

Where v is the velocity and defined using the wave function $\psi_{k,n}$ which is obtained from DFT calculation,

$$v_{\boldsymbol{k},n} = \left\langle \psi_{\boldsymbol{k},n} \left| \frac{\boldsymbol{p}}{m} \right| \psi_{\boldsymbol{k},n} \right\rangle$$

Where p is the momentum, m is mass of the electron, k is the crystal wave number, and n is the band index, respectively.

"ab_prp.data" for AIP

• • • ab_prp.data (~/abc/AIP) - VIM — ssh -X cmd2 — zsh — ttys003 abcap-ab_prp.data !jpr 0 AlN ace group -2----*----7 2 2 0 !idim, il((-1(r),0(h),1(s),2(f),3(b),4(c),5(a),6(b)),ngen,inv(0) 5 0 1 0 1 0 1 43 0 1 0 1 0 1 hds of atoms -2 ----
 lattice parameter
 -2----*----3-

 5.45
 5.45
 5.45
 90.0
 90.0
 90.0

 space group
 -2----*----3 space group kinds of atoms !# of kinds 0.0 0.0 !jpos,position,name 0.0 0.25 0.25 P !jpos,position,name -2---*--3----4---*---5---*---6---*---7 !jmag0 !noS0:(0(N),1(AF),2(M)), S0:(20(N),21(AF),22(M)) 0.25 magnetic state 0 12 12 !igen,jgen(2,3) for AF totally symmetric basis set -3----*--24.0 6 -4---!cut-off energy[Hr],Lmax -*---5k-points (# of division) !nx,ny,nz -4----*---5 iteration 6 0.05 0.05 --*---1----*---unix iso-2022-jp no 13/23: 38

Comparison between E-k curves (Zincblende and Diamond Structure)

5.1 preparation to check for optical transition(dipole allowed)

In quantum mechanics, the basis for an optical selection rule is the value of follow transition momentum integral

 $\int \psi_i^* \mu \psi_f \mathrm{d}\mathbf{r}$

for z direction, μ ="z". Operator "z" has same symmetry which pz has.

1: calculate Jones faithful representation

(1) Edit *ab_irep.data*: Give k points to be calculated. *numerator*

common denominator

(2) Run *ab_irep.sh*.

	order of the Gamma-point group = 24
	no. of irreps= 5 : dimension of irrep= 1 1 3 3 2
	nkg,ir1= 24 1 nd(ir1)= 1
	nkg,ir1= 24 2 nd(ir1)= 1
	nkg,ir1= 24 3 nd(ir1)= 3
	nkg,ir1= 24 4 nd(ir1)= 3
	nkg,ir1= 24 5 nd(ir1)= 2
	<pre>irrep= 4 nint(abs(qr(ir1)))= 24</pre>
	irredusible decomposition of Jones faithful rep
	irrep= 4 : ndim= 3
	1
C	check

2: check optical dielectric transition

(2-1) Edit optsel.data: Give k points to be calculated.

optsel.txt

summary for transition

by irrep(

4)-perturbation

4)-perturbation

4)-perturbation

4)-perturbation

4)-perturbation

4)-perturbation

4)-perturbation

4)-perturbation

4)-perturbation

4)-perturbation

4)-perturbation

4)-perturbation

result of "check.sh"

5.2 preparation to calculation for optical properties

Make a directory for the calculation for optical properties for AIP.

Use a shell-script file, **Setopt.sh**, as follows:

calculation for optical properties" *AIP_s*".

- 2 results for SCF calculation for "AIP" is copied from "AIP" to "AIP_s"
- ③ files needed for the optical calculation are copied from the directories, \$ABCAP/ samples/ZnO_5_s0/.

vxr-xr-x	15	teac14	4096	Aug	16	16:27	./	
vxr-xr-x	33	teac14	4096	Aug	16	16:27	/	
vxr-xr-x	6	teac14	8192	Aug	15	18:08	<u>Al/ 🕈</u>	
vxr-xr-x	6	teac14	8192	Aug	4	12:02	Alp/	
vxr-xr-x	2	teac14	4096	Aug	16	16:18	AlP_s/	
							4	•

working directory for the calculation for optical properties (script makes).

Firstly, we enter the working directory, "AIP_s"

Enter a command, **H**, which shows procedures of the calculation.

• • • [teac14@cmd2 AlP_s]\$	teac14@ H	ocmd2:AIP_s — ssh -X cmd2 — zsh — ttys002	
(0) (bn_scis.data)	bn_scis.sh bngap.sh	(do this just once) !optical gap	
<pre>(1) (bn_dope.data) (bnpl.data) (2) (df01.data) (3) (wpw.data) (df_total.data)</pre>	bn_dope.sh bnpl.sh df01.sh wpw.sh bn_efp2.sh df_total.sh	!bands at the fermi energy !E-k curve !dielectric function (interband epsilon(omega)) ! <w plw> !Fermi velocity <v_i*v_j> !dielectric function (+Drude term)</v_i*v_j></w plw>	
 (4) (p2_dielec.data) (p2_optnk.data) (p2_absorb.data) (5) (optra.data) (p2_optra.data)) p2_dielec p2_optnk.s) p2_absorb optra.sh p2_optra.s	.sh !total dielectric function (epsilon) sh !n, k .sh !abcorption coefficient (alpha) !T, R, A : no ps-file sh !T, R, A 	
[teac14@cmd2 AlP_s]\$;	()((,,,,,,))	

5.2.1 correct to optical band gap (Scissors Operator)

① Edit *bn_scis.data* Set band indexes which

Scissors operator operate.

② Run *bn_scis.sh*.

- ③ *bngap.sh* show the information about optical

5.2.2 calculation for dielectric function

Here we calculate the dielectric function, $\epsilon_{ij}(\omega)$

$$\begin{aligned} \frac{\epsilon_{ij}(\omega)}{\epsilon_0} &= \delta_{ij} + \frac{e^2}{\epsilon_0 m \omega^2} \left\{ \frac{1}{m} \chi_{ij}(\omega) - n \right\} \\ \chi_{ij}(\omega) &= 2 \sum_{cv} \left\{ \chi_{ij}^{cv}(\omega + i\eta) + \chi_{ij}^{cv}(-\omega + i\eta)^* \right\} \\ \chi_{ij}^{cv}(z) &= -\frac{1}{N} \sum_{\boldsymbol{k}} \frac{f_{\boldsymbol{k}v} \left(1 - f_{\boldsymbol{k}c}\right) \langle v \mid p_i \mid c \rangle \langle c \mid p_j \mid v \rangle}{z - \left(\varepsilon_{\boldsymbol{k}c} - \varepsilon_{\boldsymbol{k}v}\right)} \end{aligned}$$

$$\underbrace{\operatorname{teac14@cmd2:AIP_s - ssh - X cmd2 - zsh - ttys002}$$

Lieucittecuing wil 22	P 11	
(0) (bn_scis.data)	bn_scis.sh bngap.sh	(do this just once) !optical gap
(1) (bn_dope.data)	bn_dope.sh	!bands at the fermi energy
(bnpl.data)	bnpl.sh	!E-k curve
(2) (df01 data)	df01 ch	Idielectric function (interhand ensilon(omega))
	ui01.50	sure recent contraction (interbund epsition(onlega))
(3) (wpw.data)	wpw.sh	! <wiplw></wiplw>
		and the second

- ① Edit *df01.data*. Give the energy region to be drawn.
- ② Run *df01.qsub*.

•

200 0.0 0.00 2 5	10.0 0005 1 0 4 8		jpr ne # mesh emin,enox [eV] eshift[Hr],ipath,matopt nvu1,nv2 : conduction bands nvu1,nv2 : conduction bands
31 192	.8 310 26 17 2	5 5	nv1,nv2(up), nv1,nv2(down) : valence bands nw1,nw2(up), nw1,nw2(down) : conduction bands
10 17	18 25		nv1,nv2 : valence bands nw1,nw2 : conduction bands
0 1000 0.0 0.00 1 19) 10.0)0005 1 0 18 48		jpr ne # mesh emin,emax [eV] esift,ipath,matapt nv1,nv2 nw1,nw2
с с	jpr	i4	(0) : print option
	ne	i4	(0) : number of mesh for complex energy parameter z
	emin	r 8	(0) : min. value of Re(z) (when ipath=1)
	emax	r8	(0) max value of Re(z) (when ipath=2)
c	Cillory		max, value of Im(z) (when ipath=2)
	esift	r8	(0) : imaginary part of z (when ipath=1)
			real part of z (when ipath=2)
c c	ipath	i4	(0) : integral path index =1 : along real axis
			=2 : along imaginary axis
	matopt	i 4	(0) : matrix element option
			= 0 : F(n'sigma'k,n sigma k)
c	mid	-	= 1: 1.0
c	nv1	i4	(0) : max hand index for valence band
c	nw1	i4	(0) : min, band index for conduction band
с	nw2		(0) : max. band index for conduction band
		1 do	ta unix iso-2022-in zo 6/39.
~ NOF	MAL df0	1.00	unity the cost of

df01.data

5.2.3 calculation for velocity

	wpw data (~/abc/	AIP s) - VIM -	ssh -X ci	nd2 — zsh –	- ttys008		
-3 4 -3 4 ~	bnbgn+, bnend+ bnbgn+, bnend+	(spin up) (spin down)					
NORMAL	wpw.data		un	ix iso-2022	-jp no	2/2:	5
"wpw.data	" [converted] 2L,	76C					
_							
	teac14@cmd	2:AIP_s — ssh -	X cmd2	— zsh — ttys	8008		
[[teac14@c	md2 AlP_s]\$ wpw.s	า					
=wpw = Г+еас14@с	md2 A1P c7\$						
Lieuciter							
						_	
a) ic th	o volocity or	nd dofino	بايمين ام	a tha y			

nnw0_	190	noi c0-	40				
npw9=	180	neig9=	40				
ispi	n = 1						
2	band	<px></px>			<py></py>		<pz></pz>
1		0.0000000	0000	-0.	.000000000000) (0.000000000000
2		-0.31069488	1987	-0.	.0000000000000) (0.0000000000000
3		-0.41618478	3701	0.	.000000000000) (0.000000000000
4		-0.43656464	7111	0.	.000000000000) -(0.000000000000
5		-0.42852689	5962	-0.	.0000000000000) (0.000000000000
6		-0.39984088	9706	0.	.000000000000) (0.000000000000
7		-0.33719746	8719	0.	.000000000000) (0.000000000000
8		-0.20952377	3776	0.	.000000000000) -(0.00000000000000
9		-0.0000000	0000	0.	.000000000000) -(0.000000000000
10		-0.31952561	.6057	-0.	.319525616057		0.00000000000
11		-0.36964493	6101	-0.	.302128644337	′ –(0000000000000
12		-0.38102982	8053	-0.	.244773922385	; (0.00000000000
		-0.37740967	1605	-0.	.168290632212	. (0.000000000000
14		-0.35847476	9104	-0	.089767639685	; (0000000000000
15		-0.30715930	2117	-0.	.022727481425	i –(0.00000000000
16		-0.19214632	9511	0.	.024495544411	. (0.000000000000
17		-0.0000000	0000	0.	.042569280745	i -(0.000000000000
18		-0.33114668	9585	-0	.331146689585	i –(.000000000000
NORMA	L wpw	.log +			unix iso	2022-jp no	839/1724:
117		0.12606743	0781	-0.	.133909906667	′ -(0.13390990666
118		0.22780604	7680	-0.	.186462818440) -(0.18646281844
119		0.06381868	1539	0.	.063818681539	-(0.12140830344
120		0.25860109	1511	0.	.000000000037	′ -(0.25860109153
121		0.18646281	.8438	0.	.186462818438	-(0.22780604767
122		-0.13390990	6667	-0.	.126067430781	-0	0.13390990666
123		0.06381868	1539	-0.	.063818681539) -(0.12140830344
124		-0.04057752	1040	0.	.040577521040) -(0.04057752104
125		-0.0000000	0000	-0.	.000000000000) -(0000000000000
8	band	<px></px>			<py></py>		<pz></pz>
1		0.0000000	0000	0.	.000000000000) -(0000000000000
		0.20269282	1443	0.	.0000000000000) (000000000000000000000000000000000000000
3		0.34330650	5478	-0	.0000000000000	- (.0000000000000
4		0.42538761	9533	0.	.0000000000000		000000000000000000000000000000000000000
5		0.47436721	9485	0.	.0000000000000) (000000000000000000000000000000000000000
6		0.50447022	7333	-0.	.0000000000000	-(.0000000000000
7		0.52526403	1176	0	.0000000000000		0.0000000000000
8		0.51430721	.3681	-0	.0000000000000) -(000000000000000000000000000000000000000
9		0.0000000	0000	-0.	.0000000000000) -(0.0000000000000000000000000000000000000
10		0.24240458	0245	0.	.242404580245		0.000000000000
11		0.23768735	8120	0	. 206289993908		0.00000000000000
12		0.43857960	2866	-0	.097011318680) -(0.0000000000000000000000000000000000000
NORMA	L wpw	.log +					1588/1724:

v is the velocity and defined using the wave function $\psi_{\pmb{k},n}$ which is obtained from DFT calculation,

$$v_{\boldsymbol{k},n} = \left\langle \psi_{\boldsymbol{k},n} \left| \frac{\boldsymbol{p}}{m} \right| \psi_{\boldsymbol{k},n} \right\rangle$$

Where p is the momentum, m is mass of the electron, k is the crystal wave number, and n is the band index, respectively.

calculate fermi velocity

teac14@cmd2:AIP_s — ssh -X cmd2 — zsh — ttys002	
(0) (bn_scis.data) bn_scis.sh (do this just once) bngap.sh !optical gap	
<pre>(1) (bn_dope.data) bn_dope.sh !bands at the fermi energy (bnpl.data) bnpl.sh !E-k curve (2) (df01.data) df01.sh !dielectric function (interband epsilon(omega)) (3) (wpw.data) wpw.sh !<w p w> bn_efp2.sh !Fermi velocity <v_i*v_j> (df_total.data) df_total.sh !dielectric function (+Drude term)</v_i*v_j></w p w></pre>	
 (4) (p2_dielec.data) p2_dielec.sh !total dielectric function (epsilon) (p2_optnk.data) p2_optnk.sh !n, k (p2_absorb.data) p2_absorb.sh !abcorption coefficient (alpha) (5) (optra.data) optra.sh !T, R, A : no ps-file (p2_optra.data) p2_optra.sh !T, R, A 	 bn_efp2.log (~/hamada/CMD/29/local/AIP_s16) - VIM — vim bn_efp2.log — zsh — ttysD04 isp,ibn,ieig= 1 6 7 isp,ibn,ieig= 1 7 8 p**2 (atomic unit) (each band)
۲+por14@cmd2 A1P داد	p**2 (anisotropy) (each band)
	p**2 (atomic unit) (each spin) 1 0.001820 0.000496 0.000000 -0.000000 0.000496 0.000000 0.000496 D0S[/Hr], v [m/s] (SI unit) (each spin) 1 0.001820 48703. 48703.
<pre>teac14@cmd2:AlP_s — ssh -X cmd2 — zsh — ttys001 [[teac14@cmd2 AlP_s]\$ bn_efp2.sh =bn_efp2 = [teac14@cmd2 AlP_s]\$</pre>	DOS, xx, yx,yy, zx,zy,zz =(whole bands)= DOS[/Hr]= 0.003640 p*2 (atomic unit) 0.000496 0.000000 0.000496 v [m/s] (SI unit) 48703. 48703 p**2 (anisotropy) (vxx+vyy)/2*vzz = 1.000000 v (anisotropy) sqrt((vxx+vyy)/2*vzz) = 1.000000
	Conductivity
	m_bn_eeig_unset m_bn_kp_unset en dm_input_unset NORMAL bn_efp2.log unix iso-2022-jp no 14873/14873:

5.2.4 calculation for the Drude term and total dielectric function

For metallic case, we add the Drude term,

[[t =d [t

$$\frac{i}{\omega} \frac{\sigma_{ij}(0)}{1 - i\omega\tau} = \frac{-1}{\omega} \frac{\sigma_{ij}(0)/\tau}{\omega + i/\tau}$$

$$\sigma_{ij}(0)/\tau = \frac{e^2}{c_0} \langle v_i v_j \rangle_F D(\varepsilon_F)$$

$$\frac{e^2}{c_0} \langle v_i v_j \rangle_F D(\varepsilon_F)$$

$$\frac{e$$

5.2.5 check results

Index of the component for the dielectric function

	$\left[\frac{\operatorname{Re}(\epsilon_{xx})}{^{(1)}}\right]$	$\frac{\mathrm{Im}(\epsilon_{xx})}{^{(2)}}$	$\frac{\operatorname{Re}(\epsilon_{xy})}{{}^{(3)}}$	$\frac{\mathrm{Im}(\epsilon_{xy})}{}^{(4)}$	$\frac{\operatorname{Re}(\epsilon_{xz})}{^{(5)}}$	$\frac{\mathrm{Im}(\epsilon_{xz})}{}^{(6)}$
$\epsilon =$	$\operatorname{Re}(\epsilon_{yx})$	$\operatorname{Im}(\epsilon_{yx})$	$\frac{\operatorname{Re}(\epsilon_{yy})}{^{(7)}}$	$\frac{\mathrm{Im}(\epsilon_{yy})}{}^{(8)}$	$\frac{\operatorname{Re}(\epsilon_{yz})}{(9)}$	$\frac{\mathrm{Im}(\epsilon_{yz})}{(10)}$
	$\left\lfloor \operatorname{Re}(\epsilon_{zx})\right.$	$\operatorname{Im}(\epsilon_{zx})$	$\operatorname{Re}(\epsilon_{zy})$	$\operatorname{Im}(\epsilon_{zy})$	$\frac{\text{Re}(\epsilon_{zz})}{(11)}$	$\frac{\mathrm{Im}(\epsilon_{zz})}{}$

In this case, this crystal has a cubic symmetry,

$$\begin{cases} \epsilon_{xx} = \epsilon_{yy} = \epsilon_{zz} & \text{diagonal element} \\ \epsilon_{xy} = \epsilon_{yz} = \epsilon_{zx} & \text{off-diagonal element} \end{cases}$$

diagonal and off diagonal element of dielectric function tensor

2.0

0.0

4.0

6.0

8.0

10.0

E(eV)

device simulation

Result of Optical Properties for AIP

Additional Information

Other Examples

Al(Aluminum)

Cr(Chromium)

Ni(Nickel)

Cu(Copper)

Space group information

How do you define the origin of Nonsymmorphic Crystal?

	atomic position	inversion center
choice 1	(0,0,0) and (1/4,1/4,1/4)	No
choice 2	(±1/8,±1/8,±1/8)	Yes

which is better?

	wycoff.data (~/abc/Fe) - VIM — ssh cmd2 — zsh — ttys003
24d 0 q q	
48e × 0 0	
48† x q q	
$96h a \vee V$	
96i 0 v z	
92j x y z	
227 9	
8a 0 0 0	
8b h h h	
160 8 8 8	
32e x x x	
48f x 0 0	
96g x x z	
96h 8 y n	
92i x y z	
227 9	
84333	
16c 0 0 0	
16d h h h	
32e x x x	
48f x 8 8	
96g x x z	
96n 0 y w	
228 8	
16a 0 0 0	
32b 8 8 8	
32c 3 3 3	
48d q 0 0	
64e X X X	
96a 8 v n	
92h x y z	
228 8	
NORMAL V	wycoff.data unix iso-2022-jp no 2347/2388: 1

Generator of the space group

File: wycoff.data

CONTINUED		No. 227	$Fd\bar{3}m$
Generators selected (1); t(1,0,0); t(0	$(0,1,0); t(0,0,1); t(0,\frac{1}{2},\frac{1}{2}); t(\frac{1}{2},0,\frac{1}{2}); (2)$; (3); (5); (13); (25)	
Positions			D-flastian ann litiana
Wultiplicity, Coc Wyckoff letter,	rdinates		Reflection conditions
Site symmetry $(0, 0, 0) + (0, \frac{1}{2}, \frac{1}{2}) +$	$(\frac{1}{2}, 0, \frac{1}{2}) + (\frac{1}{2}, \frac{1}{2}, 0) +$		h,k,l permutable General:
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{l} (4) x + \frac{1}{2}, \overline{y}, \overline{z} + \frac{1}{2} \\ (12) y, \overline{z}, \overline{z} + \frac{1}{2}, x + \frac{1}{2}, \overline{y} \\ (12) y, \overline{z}, \overline{z} + \frac{1}{2}, x + \frac{1}{2} \\ (16) \overline{y} + \frac{1}{2}, x + \frac{1}{2}, x + \frac{1}{2} \\ (20) x + \frac{1}{2}, \overline{z} + \frac{1}{2}, y + \frac{1}{2}, \overline{z} + \frac{1}{2} \\ (24) \overline{z} + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{x} + \frac{1}{2} \\ (22) \overline{z} + \frac{1}{2}, \overline{x} + \frac{1}{2}, y + \frac{1}{2}, \overline{z} + \frac{1}{2} \\ (32) \overline{z} + \frac{1}{2}, \overline{z} + \frac{1}{2}, \overline{y} + \frac{1}{2} \\ (36) y + \frac{1}{2}, \overline{z} + \frac{1}{2}, \overline{y} + \frac{1}{2} \\ (44) \overline{x}, z + \frac{1}{2}, \overline{y} + \frac{1}{2} \\ (48) \overline{z}, y, x \end{array} $	$\begin{array}{l} hkl: \ h + k = 2n \ and \\ h + l, k + l = 2n \\ h + l, k + l = 2n \\ k + l = 4n \ and \\ k, l = 2n \\ hkl: \ h - l = 2n \\ hk0: \ h = 4n \end{array}$
		Spe	ecial: as above, plus
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	no	extra conditions
96 $g \dots m$ x, x, z z, x, x x, z, x $x + \frac{1}{2}, x + \frac{1}{2}, \frac{1}{2} + \frac{1}{2}$ $x + \frac{1}{2}, z + \frac{1}{2}, \frac{1}{2} + \frac{1}{2}$ $z + \frac{1}{2}, x + \frac{1}{2}, \frac{1}{2} + \frac{1}{2}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ll} x+\frac{1}{2}, \overline{x}, \overline{z}+\frac{1}{2} & \text{no} \\ \overline{z}+\frac{1}{2}, x+\frac{1}{2}, \overline{x} \\ \overline{x}, \overline{z}+\frac{1}{2}, x+\frac{1}{2} \\ \overline{x}+\frac{3}{4}, x+\frac{3}{4}, z+\frac{1}{4} \\ x+\frac{1}{4}, \overline{z}+\frac{3}{4}, z+\frac{1}{4} \\ \overline{z}+\frac{1}{4}, \overline{x}+\frac{1}{4}, \overline{x}+\frac{1}{4} \end{array}$	extra conditions
48 $f = 2.mm = x,0,0$ $\bar{x},\frac{1}{2},\frac{1}{2}$	$0, x, 0$ $\frac{1}{2}, \overline{x}, \frac{1}{2}$ $0, 0, x$	$\frac{1}{2}, \frac{1}{2}, \vec{x}$ hkl	: $h = 2n + 1$
$\frac{3}{4}, x + \frac{1}{4}, \frac{3}{4}$ $\frac{1}{4}, \overline{x} + \frac{1}{4}$	$,\frac{1}{4}$ $x + \frac{3}{4}, \frac{1}{4}, \frac{3}{4}$ $\bar{x} + \frac{3}{4}, \frac{3}{4}, \frac{1}{4}$ $\frac{3}{4}, \frac{1}{4}, \bar{x} +$	$\frac{1}{4}$ $\frac{1}{4}$, $\frac{1}{4}$, $x + \frac{1}{4}$	or $h+k+l=4n$
32 e . 3 m $\bar{x} + \frac{1}{2}, x + \frac{1}{2}, \bar{x}$ $x + \frac{1}{4}, x + \frac{1}{4}, \bar{x} + \frac{1}{4}, $	$\begin{array}{l} \bar{x}, \bar{x} + \frac{1}{2}, x + \frac{1}{2} \\ x + \frac{1}{2}, \bar{x}, \bar{x} + \frac{1}{2} \\ \bar{x} + \frac{1}{2}, \bar{x}, \bar{x} + \frac{1}{2}, \bar{x} + \frac{1}{4} \\ \bar{x} + \frac{1}{4}, \bar{x} + \frac{1}{4}, \bar{x} + \frac{1}{4} \end{array}$	no	extra conditions
16 d $.\overline{3}m$ $\frac{5}{8}, \frac{1}{8}, \frac{5}{8}$ $\frac{1}{8}, \frac{2}{8}, \frac{1}{8}$ $\frac{2}{8}$, <u>i</u> ,i i,i,i	hkl	: $h = 2n + 1$
16 c $.\bar{3}m$ $\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{5}{8}, \frac{3}{8}$	$(\frac{5}{8}, \frac{7}{8}, \frac{5}{8}, \frac{7}{8}, \frac{3}{8})$		or $h, k, l = 4n + 2$ or $h, k, l = 4n$
8 b $\overline{4}3m$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$		hkl	: $h = 2n + 1$
8 a $\bar{4}3m$ 0,0,0 $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$			or $h+k+l=4n$
Symmetry of special projections Along [001] $p + mm$ $\mathbf{a}' = \frac{1}{2}(\mathbf{a} - \mathbf{b})$ $\mathbf{b}' = \frac{1}{2}(\mathbf{a} + \mathbf{b})$ Origin at 0,0, z	Along [111] $p6mm$ $\mathbf{a}' = \frac{1}{2}(2\mathbf{a} - \mathbf{b} - \mathbf{c})$ $\mathbf{b}' = \frac{1}{2}(-\mathbf{a} + 2\mathbf{b} - \mathbf{c})$ Origin at x, x, x	c) Along [1] $\mathbf{a}' = \frac{1}{2}(-\mathbf{a}')$ Origin at	$ \begin{array}{l} 10] \ c \ 2mm \\ \mathbf{a} + \mathbf{b}) \qquad \mathbf{b}' = \mathbf{c} \\ x, x, \frac{1}{2} \end{array} $

International Table of Crystallography A

● ● teac14@cmd2:Fe — ssh cmd2 — zsh — ttys003
[[teac14@cmd2 Fe]\$./ab_crystal.sh
select Sch_hame(1),HM_hame(2),space-group-humber(3)
schnam?
227 Oh7 Fd-3m : number of choices= 2
choice no? 1
welcome to tspace v4.1 1995/09/06 227 0h7 Fd-3m choice 1
face centered lattice
1 1 e x y z 0/1 0/1 0/1
2 2 c2x x -y -z 0/1 0/1 0/1 3 3 c2y -x y -z 0/1 0/1 0/1
4 4 c2z -x -y z 0/1 0/1 0/1 E E c21, z y y 0/1 0/1 0/1
6 6 c32+ -z x -y 0/1 0/1 0/1
7 7 c33+ -z -x y 0/1 0/1 0/1 8 8 c34+ z -x -y 0/1 0/1 0/1
9 9 c31- y z x 0/1 0/1 0/1
10 10 c32- y -z -x 0/1 0/1 0/1 11 11 c33y z -x 0/1 0/1 0/1
12 12 c34y -z x 0/1 0/1 0/1 13 13 c20 y x -7 1/4 1/4 1/4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15 15 c2c z -y x 1/4 1/4 1/4 16 16 c2d -x z y 1/4 1/4 1/4
17 17 c2e -z -y -x 1/4 1/4 1/4 18 18 c2f -x -z -y 1/4 1/4 1/4
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
20 20 c4y+ z y -x 1/4 1/4 1/4 21 21 c4z+ -v x z 1/4 1/4 1/4
22 22 c4x- x z -y 1/4 1/4 1/4 23 23 c4y z y x 1/4 1/4 1/4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
25 25 ie -x -y -z 1/4 1/4 1/4 26 26 ic2x -x v z 1/4 1/4 1/4
27 27 ic2y x -y z 1/4 1/4 1/4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
30 30 ic32+ z -x y 1/4 1/4 1/4 31 31 ic33+ z x -y 1/4 1/4 1/4
32 32 ic34+ -z x y 1/4 1/4 1/4
33 33 $1C31y - z - x$ $1/4$ $1/4$ $1/434$ 34 $1C32y$ z x $1/4$ $1/4$ $1/4$
35 35 ic33- y -z x 1/4 1/4 1/4 36 36 ic34- y z -y 1/4 1/4 1/4
37 37 ic2a -y -x z 0/1 0/1 0/1
38 38 1c2b y x z 0/1 0/1 0/1 39 39 ic2c -z y -x 0/1 0/1 0/1
40 40 ic2d $x - z - y 0/1 0/1 0/1$ 41 41 ic2e $z - y - x 0/1 0/1 0/1$
41 41 1020 2 y x 0/1 0/1 0/1 42 42 ic2f x z y 0/1 0/1 0/1
43 43 ic4x+ -x z -y 0/1 0/1 0/1 44 44 ic4v+ -z -y x 0/1 0/1 0/1
45 45 ic4z+ y -x -z 0/1 0/1 0/1
46 46 164xx-z y 0/1 0/1 0/1 47 47 ic4y- z-y-x 0/1 0/1 0/1
48 48 ic4zy x -z $0/1$ $0/1$ $0/1$ this space aroun has the following wycoff position
8a 0 0/1 0 0/1 0 0/1
80 0 1/2 0 1/2 0 1/2 16c 0 1/8 0 1/8 0 1/8
16d 0 5/8 0 5/8 0 5/8 32e 1 0/1 1 0/1 1 0/1
48f 1 0/1 0 0/1 0 0/1
96g 1 0/1 1 0/1 3 0/1 96h 0 1/8 2 0/1 -2 1/4
192i 1 0/1 2 0/1 3 0/1
atom-name(H,He,) or . (to finish) ? :

How to make "ab_prp.data"

To make **ab_prp.data**, there is a tool, **ab_crystal.sh**.

