

CMD36 Workshop, Osaka Univ., Japan, Feb/21/2020

CMD[®] Case Studies (2)

Theoretical Calculations by Computations to Go beyond Theories

Masato YOSHIYA, Students and Collaborators

Graduate School of Engineering, Osaka University Japan Nanostructure Lab., Japan Fine Ceramics Center, Japan

Masato Yoshiya: yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-u.ac.jp

Theories & *ab initio* Calculations

Contents

Introduction to Computation (ab initio and beyond)

- ✓ Thermal Conductivity
- ✓ Thermal Expansion
- ✓ Conclusions

Masato Yoshiya: yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-u.ac.jp

Three Ways of Computations

✓ Simulation

To reproduce something, and identify governing factors

✓Theoretical Calculation

To use no theory for properties, but fundamental theory

✓Computational Experiment

To do experiments in computers

Conflicting Demands for Materials

Selective Control of Thermal Conduction

Electronic Cond

Ihermal Cond.

Melting Point Strength (Bond Strength)

Problems:

- Easy to decrease thermal conductivity ALONE
- Conventionally, discussing "Mean Free Path" Length of Defects \rightarrow Remains qualitative \rightarrow No quantitative guideline
- Unclear: Selective control of thermal conduction without deteriorating other properties needed

Through computations,

Guidelines to control beyond correlation or trade-off

Masato Yoshiya: yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-u.ac.j

Layered Thermoelectric Oxides

 \checkmark Introduction to Computation (ab initio and beyond)

✓ Thermal Conductivity

- ✓ Thermal Expansion
- ✓ Conclusions

Masato Yoshiya : yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-u.ac.

Similarities and Differences: (Electrons and Phonons)

- ~1960: Equally discussed and theories developed
- After discovery of semiconductors: Phonons left behind electrons
- Reactivated in 21st century → Phonon conduction is complicated

Electrons

Fermi-Dirac statistics

Phonons

Bose-Einstein statistics

Only Electrons near Fermi level contribute to **T**

Masato Yoshiya: yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-u.ac.j

Approaches to Thermal Conduction

- Phonons: Classical MD (Modeling)
 Force-Field: From *ab initio* calc.
 Mechanism: Original ways
- 3. Guideline for control Computational Experiment

吉矢真人 Masato Yoshiya:yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-u.ac.jp

Thermal Conductivity: Existing Methods

吉矢真人 Masato Yoshiya:yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-u.ac.j

Understanding through Comp. Exp.

Exp. Observation Understood

CTE: Coeff. Thermal Expansion

- ✓ Introduction to Computation (ab initio and beyond)
- ✓ Thermal Conductivity
- ✓ Thermal Expansion
- \checkmark Conclusions

吉矢真人 Masato Yoshiya:yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-u.ac.jp

The most serious concern is lifetime.

「矢真ノ	Masato	$\operatorname{Yoshiya}$: yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-	u.ac.jp
------	--------	--	---------

Mitigate Thermal Fatigue and Fracture

- 1. Suppress Phase Transformation: Gibbs Free Energy (at high T & P)
- 2. Control CTE: Anharmonicity?

Grüneisen parameter (anharmonicity) Differences attributed to γ (Conventional)

$$\alpha = \frac{\rho C_V \gamma}{K_T}$$

 α : Coeff. Thermal Expansion ρ : Density (Mass) C_V : Specific Heat K_T : Elastic Constant γ : Grüneisen parameter

J. Eur. Ceram. Soc, (2019)

Questions left:

- How to change anharmonicity of phonons?
- Wther thermal conductivity is sacrificed or not?
- Can we use the equation above?

→Directly calculate equilibrium volume at each T having minimum Gibbs free energy

Approaches to Thermal Expansion

1.	CTE~10 ⁻⁶ /K:	ab initio Calc.
2.	Phonons:	Lattice Dynamics (not MD)
3.	T dependence:	"Quasi-"harmonic Approx.
4.	f -electrons:	Almost frozen (pseudized)
5.	Crystal Symmetry:	Not fixed (exp. at high T)
6.	Preliminary:	Machine Learning

Validity of these assumption verified before main calc.

(Vol.: -0.5% underestimated, CTEs are good agreements with exp.)

吉矢真人 Masato Yoshiya: yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-u.ac.jp

Conclusions #2

It is probably a good idea

For Experiments

To talk with computer guys not for ideal values or theoretical values but to sort out complexity of reality and to find out mechanism behind phenomena

For computer guys

To go out to find that world is wider

To talk with your colleague to find out what to calculate

For Theorist (Analytical)

To let computers help you to solve your problem while sleeping

Conclusions #1

For computational studies to do some role, It is critically important

- > To fully understand advantages and limitations of each method
- > To carefully set a problem (What to understand)
- To discuss experimentalist beforehand

吉矢真人 Masato Yoshiya:yoshiya@ams.eng.osaka-u.ac.jp, http://www.cmdc.ams.eng.osaka-u.ac.jp