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• As particles

• As waves
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Schematic picture of

an electron

./2 =k

Electron bi-prism

Electron gun

(emitter)

Interference fringe

,k
h

p ==
 p : momentum,

l : wave length,

k : wave number,

h : the Planck constant.

Found at a position

An electron moves as a wave, found to be a particle.
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Electron bi-prism

Interference fringe

Detector
(Electron counter)

Electron gun

Electron is a wave!

It’s a quantum particle.

Cf. 外村彰著 「量子力学への招待」
“Introduction to quantum mechanics”,  

A. Tonomura (Iwanami shoten, in Japanese)

Display
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An imaginative picture

of the electron

Found at a position

Position      : 

Momentum :

r

r
p=m

dr

dt

Both determined at a time t

Electron bi-prism

Electron gun

(emitter)

Particle position at the time t is not determined to be any specific state at r.

The state with ‘a group velocity’ is composed of a superposition of ’p states’.

An electron as a wave, which is in ‘a scattering state’.
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A. Hashimoto, K. Suenaga,         

A. Gloter, K. Urita & S. Iijima, 

Nature 430, 870 - 873 (2004). 

Cf. M. Ziatdinov, et al., Phys. Rev. 

B 89, 155405-1-15  (2014). 

Therefore, we recognize “existence of the electron wave”.



• I am rather delighted that we must resort to 
such peculiar rules and strange reasoning in 
order to understand Nature, and I enjoy telling 
people about it.

• There is no “wheels and gears” beneath this 
analysis of Nature; if you want to understand 
Her, this is what you have to take.

6
“QED  THE STRANGE THEORY OF LIGHT AND MATTER”

Richard P. Feynman (Princeton Univ. Press, 1985.)



• The coordinates

• Wavefunction : an amplitude by projection
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State

State vector

The state may be measured by the coordinates.



This is ‘a superposition’ of two independent states. 
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2121
0 −=−= =S

0=S by
“A vector” !

Prof. P.A.M. Dirac

is with a name “Ψ”
added to the 

symbol.
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A state vector shows ‘transition to the other state’.

A

B

Emission

Observation

Experimentally, we only see 

‘the action’ as amplitudes.

dttt 10;, 0 +

0, t

When a time coordinate is fixed for 

a system, a Hamiltonian operator is  

determined by ‘the gauge fixing’.

An eigen state A transient state



• Based on difference in the mass, separation of the quantum 
mechanical motion is done. (the error scales as (m/M)6/4.) 

Cf. S. Takahashi, K. Takatsuka, J. Chem. Phys. 124, 144101 (2006).

• Existence of stable materials allows us to fix positions (or 
“distribution”) of the mass center. Then, we may also make 
use of “existence of the order” in the material a priori.
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m: electron mass

nuclear mass

The order is given by “the charge distribution of each species”. 

In relativistic form, it is by “distribution of the 4-current”.



11

( ) ( ) ( ) ( )
( )

.

ˆ)(
'

:'ˆˆ:
'ˆˆ

2

ˆ

3
2

332
2

3

=













+

−
+








−=





E

nrvd
nne

rrdd
m

rd

H

ext rr
rr

rr
rr



 †


( ) 
= −

=
ionN

I I

I
ext

eZ
v

1

2

Rr
r

Multiply              to the Schrödinger equation from the left, IR

and define the external potential                                    for the electrons, we have,

The Coulomb kernel is fixed as the photon propagator in a steady state.

Therefore, in a “well-defined” precise description of the quantum mechanical 

motion of electron, we may start from the electron Hamiltonian in the 

equation above.

Here, this operator is a two-component Fermion field operator.



• Static state of electron system:
• Represented by potential:

• Cf: Ehrenfest’s theorem

• The Hamiltonian
• Velocities of electrons < the velocity of light,

• In a steady material, internal gauge field behaves as the 
Coulomb potential.
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2p 3d

• Therefore, charge density should be determined.

A charge density map of

a many electron system

Single electron wavefunctions

in steady states.
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Schrödinger equation : partial differential equation
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We need to employ “an efficient (fast) calculation method” equivalent to

a solver of the differential equation.

From Schrödinger picture (Wave equation) 

to Heisenberg picture (Matrix equation or operator formalism)

From Differential equation (Function of coordinates)

to Green’s function method (Inverse operator or resolvent)

To realize one of them, however, we need, at least and at any time, 

“a set of well-converged basis functions” to have an efficient expansion!

This part consists from purely mathematical 

and practically computational problems.
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Model calc.

• Models of strongly correlated 
electron systems

• Hubbard, Anderson

• Effective-mass theory

Perturbation

Green-
function

• GW+vertex correction

• Spectral DFT

• Dynamical Mean field 
theory (DMFT)

• Dynamical cluster 
approximation (DCA, 
CDMFT)

Monte-Carlo 
method

• Diffusion Monte Carlo

• Path integral QMC

• Projector QMC

• Continuous time loop 
algorithm

Utilization of the DFT single-particle 

orbitals has no more difficulty in our 

theory of “multi-referenced DFT”. 

DFT calc.

Many-body theory need “a basis 

functions to make an expansion”.



• Energy as a functional of vext: E[vext].

• A functional derivative:

• The order parameter : n(r).
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K. Kusakabe and I. Maruyama, J. Phys. A: Math. Theor. 44 (2011) 135305.
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• Consider two potentials, v1(r) and v2(r), which 
are different more than a constant from each 
other.

• Let |1> and |2> be an eigen state of a 
system by v1(r) and that by v2(r), respectively.

• Then, |1> cannot be an eigen state of v2(r) 
and vice versa.
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Proof: The unique continuation theorem for the Poisson equation tells us 

that the statement above is correct. See the next page.



• When our system is treated by the Born-Oppenheimer 
approximation, nuclei is treated as fixed point charges.

• v1 and v2 follows the Poisson equation.

• Suppose that  is a solution of two Schrödinger equation given by 
v1 and v2, where v1 and v2 are different from each other more than a 
constant.

• We have v1 =(v2+const.) .

• Let N be the number of electrons.

• We may find an open set S in R3 , where 

 (r1+r,1, r2, 2,・ ・ ・ , rN, N) ≠ 0 

for r ∊ S.

• In S, we have v1(r) = v2(r) + const.

• By the unique continuation theorem, we conclude that  v1(r) = v2(r) 
+ const. in R3.

• This conclusion contradicts to the assumption.
18

Note: you can find that the next proof is easily extended 

for a wider class of Hamiltonians appearing in a model 

space.



• By the last theorem, we have a next inequality which is a contradiction. 

• This implies existence of “one-to-one correspondence between the 
potential and the electron density”. (by Hohenberg and Kohn (1964)) 
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• Fixed positions of nuclei give a scalar potential vi.

• When v2 ≠ v1 + const., 1≠2 , where i is a ground state 
for a problem by vi. (by the unique continuation theorem.)

• In this case, n1 ≠ n2. (Proof by Hohenberg & Kohn.) 
Namely,
• If “n1=n2=n” and “1≠2”, then 

• Thus, we have a one to one correspondence between v
and n.

• Namely, n gives v, the Hamiltonian, and the wave 
function of the ground state  with energy E[n].
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• Density as a variable

• Search optimum n(r) by referencing “another 
wave function f(r)”. (by Kohn & Sham (1965))

• Caution 1 by Harriman :

• Caution 2 by Lieb :
21

(x1,x2,x3,‥) n(r) f (r)

Kohn-Sham

theory
DFT

( ) ( ) ( )  ( )..s.t, rnrrIrn iiN → ff

,NN IA  '.NN AA 

We need other energy functionals than the Hohenberg-Kohn functional.
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⚫ V-representable density : 
⚫ Density of a ground state, which is an eigenstate of an interacting 

Hamiltonian operator for an external potential vext(r).

⚫ N-representable density : 
⚫ Density satisfying next three conditions.

( ) ( ) ( ) .,,0
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When N>1



• The Levy-Lieb universal energy density functional

• The Lieb energy functional
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T̂ eeV̂: kinetic energy operator, : electron-electron interaction.
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̂ : density matrix.

Since              is a positive quadratic form,
eeVT ˆˆ +

For a density, ( ) ,0rn which is ensemble-V (EV) representable, 
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This definition of the density functional theory does not rely on HK.
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Definition of Exc[n].
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 nF

Ex. Metal ↔ Mott insulator, 

Kramers doublet ↔ local Kondo singlet

  .'ˆˆ'min
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A true electron system

Kohn-Sham

K. Kusakabe and I. Maruyama, J. Phys. A: Math. 

Theor. 44, 135305 (2011).

Modified energy functional and phase 

transition points.

Differentiability of the Lieb functional is 

shown in the following conditions, only.

See also contents of 13th lecture.

Special directional derivative 

of FL[n] is given.

• n(r) is an EV-representable,

• Direction n1(r) is an EV-rep.,

• n(r) >0, and n1(r)>0,

• Second order derivatives of

n1(r), n(r), and G.S. w.f., are

square integrable. 

P.E. Lammert, Int. J. Quant. Chem. 

107, 1943 (2007).

Note that functional derivative is 

considered  with variation out of H1

in general sense, if one do not 

make a caution on the domain.
of “Theory in Materials Science @ ES-OU”.



DFT & LDA/GGA
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Hohenberg-Kohn theorem

Harriman-Lieb construction
Levy-Lieb constrained min.

Lieb functional with 
definition of the domain

Definition of energy functional Model  functional introduced, 

then, we have the steps !

Kohn-Sham variational
method

Caution: On the searching path, definition of the Kohn-Sham equation by using functional derivative of the 

Lieb functional is not always possible. While directional derivative is given for limited directions, not only 

interpolation but extrapolation of n(r) is requested to determine effective potential. 

Many-body perturbation 
theory using K-S orbitals

Effective many-body models 
to search “exact results”



Functional derivative

The Graduate School of Engineering Science 28

Variation w.r.t. density
• General variation of n(r) includes,

• Variation maintaining N has to be 
non-local.

Non-linear functional
• Fréchet derivative w.r.t. n(r) is 

accessible for linear functional. 
But, FL[n] is not a linear functional.

r

n(r)
n(r)

r

n(r)
+ n(r)

r

n(r)

Since  giving “non-N-rep. n(r)” is 

not found, “ensemble v-rep. n(r)” is 

requested. The Gâteaux derivative of

the Lieb functional has directional 

dependence on n(r) as a function of r.

r



Classification of density

A density distribution given by a quantum eigen state in a potential
v-representable

• A (N)： by an eigen state (a ground state) of an interacting N-body electron system

• A (N)’： by an eigen state (a ground state) of a non-interacting N-body Fermion 
system

by an anti-symmetric wave function of an N-particle system
N-representable

• I (N):  positive, integrable, thus normalizable to give N, (∇n(r)1/2)2 is also square integrable

• The Harriman-Lieb construction gives a many-body wave function giving n(r). Thus existence of 
the wave functions for constrained minimization is certified.

Linear combination of two or more v-representable density distributions 
(Ensemble average as statistical average)

Ensemble v-representable

• Defined as an interpolating point of two well-defined end points

• Two end points are v-representable (non-negative,  without diverging points)

• A statistical average found on the way of the search is not pure v-representable.

The Graduate School of Engineering Science 29

The rigorous DFT method requires “huge amount of calculation steps” far 

bigger than the statistical quantum mechanics method for N-body problem.



We do not use the Lieb functional.
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Let’s assume that is a minimizer w.r.t. variation:

where density variation is assumed to be given as,

: two end points are positive. (Good. But,)

: the directional derivative has     

dependence.

: known numerical methods are not applicable 

to solve these equations, since

 ( )r'n

: is not a local potential, and

We offer another way by evading this difficult point of KS equation.
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Why do we use DFT?

• Degree of freedom is separated into electrons and nuclei by 
the Born-Oppenheimer approximation. 

– Electron density characterizes the system!

• Let’s determine the free energy (total energy at T=0K)  
by the electron density.

The Graduate School of Engineering Science 31

Hamiltonian
• Born-Oppenheimer approx.

➢ Classical configuration of nuclei,

➢ Determination of static potential.

Order parameter
• Funct. deriv. w.r.t. ext. pot.
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Statistical mechanics offers a solution.

• L.D. Landau had predicted relevance of order parameters. 
– Energy of condensed matter is given by “a function of 

physical variables” i.e. a functional of a function.
• Landau considered analytic functions at first.
• Phenomenological, but “exact”, since the idea comes from 

observation of phenomena.

• Present DFT is interpreted as a realization.
– Order parameter = Electron density
– Energy functional = Landau functional

The idea goes back to the original Thomas-Fermi arguments. 
As such, the history of the quantum statistical mechanics is 
long.
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• First, set up a differentiable energy functional.

• Derive a determining equations, which are to 
be self-consistent equations.
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This strategy gives us “realistic approaches” of DFT. 

We had developed “systematic improvement” of any approximation in DFT.



⚫ The exchange-correlation energy functional may be written 
as,

with

⚫ In the local density approximation (LDA), we approximate 
nxc by that of the homogeneous electron gas as,
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Quantum Fluctuation!

「原子・分子の密度汎関数法」、R.G.パール・W.ヤング著、
シュプリンガー、pp.200 §8.5参照

‘Density-functional theory of atoms and molecules,’ by R.G. Parr, 
& W. Yang, Springer, §8.5.
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When we choose LDA, the Kohn-Sham equation reads,
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LDA exchange-correlation energy can be written as,

• This LDA exchange-

correlation hole satisfies a 

sum rule. (See next page.)

• The value is given for any n(r). 

Reasonable accuracy !!!

For this set of equations, we have 

computer codes as numerical 

solvers of quantum mechanical 

problems for electron systems.

( ) ( )( )3 .xcd rn n=  r r

If you need, you may always make a correction by introducing 

“multi-reference representation of a model many-body system”.  
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Thus, although we have completely different formulae for DFT and LDA, 

the same sum rule for the exchange-correlation hole is satisfied. 
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Wigner (1934)

Nozières & Pines (1958)

Hedin & Lundqvist (1971)
Perdew & Zunger (1981)

Vosko, Wilk & Nusair (1980)

Let’s introduce rs by we may divide xc as, ( ) ( ) ( ).scsxsxc rrr  +=







= 3

3

4
/1 s

e r
V

N 
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We need to find a solution {fi(r)} satisfying

1. Symmetry of the system (Crystal symmetry, molecular symmetry)

2. Self-consistency

This is a least version for DFT. It is corrected by “quantum charge fluctuation”. 

A good point: A complete basis set giving

the expansion of the many-body state vector.
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 bands

(bonding bands)

* bands

(anti-bonding

bands)

An energy gap appears and the system is a wide-gap

semiconductor.

 

LDA by PW91.

Plane-wave expansion with ultra-soft PP.

This descript ion is not 
accurate (even wrong). 

But,

Without this step, we have 
no good way to determine 
“convergint calculations”.



• In a covalent crystal, 
we can see charge 
density of electrons at 
each bond connection.

• Yellow object 
represents charge 
density and white 
spheres are carbons.

40

The density map is rather 
accurate, because it is 

determined self-consistently.
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 bands

(bonding bands)

* bands

(anti-bonding

bands)

The -band is half-filled and there are small

Fermi pockets both for electrons and holes. (Semimetal)

 bands

(bonding bands)

* bands

(anti-bonding)





• Bonding charge 
comes from -
electrons.

• This system is a 
semimetal where 
the Fermi surface is 
made of -bands.
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When you see a localized state mediating quantum information process, 

you may introduce “a solver for correlated electron systems” at any time.
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This is a result by 

a tight-binding model.

We want to see “what is seen in the right figure”!!



• To overcome limitation of LDA, Kohn & Sham had 
considered gradient corrections.

• Let’s first introduce another order parameter,

or density for two spins, n↑(r), n↓(r), or density of multiple 

species (electrons & nuclei).

• Naively,
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• GEA fails due to violation of sum rules.

• Introduce a GGA exchange-correlation energy 
functional, whose ex.-corr. hole satisfies desired sum 
rules.
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For the case of exchange hole,

‘Electronic Structure – Basic Theory and 
Practical Methods,’ by R.M. Martin,

Cambridge University Press.



• 3d ferromagnetic metals:

• LSDA does not reproduce stability of ferromagnetism.

• Spin-GGA reproduces magnetism even quantitatively.                     
(This is practical understanding.)
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Element Tc/K M/mB Configuration

Fe 1043 2.219 3d6

Co 1404 1.715 3d7

Ni 630 0.604 3d8
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up spins
down spins

Thanks to Akai-KKR

The result suggests existence of m(r) 

in a solution of DFT simulation.

( ) ( ) ,ˆ,ˆ rjrm or

( ) ( ) ( )xxxj  mm =ˆ

may be used to determine the internal 

vector photon field to derive an 

effective potential problem 

determining an L2 basis.

An effective action and the 

resulting effective Hamiltonian 

contain all the electron-electron 

interaction processes in many-

body description.



GGA OK GGA not in use
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• Good 3d metals,

• Strong metallic 
ferromagnets,

• 3d semiconductors,

• Molecules,

• Molecular solids without 
- stacking.

• Graphite, h-BN, CF,

• Weak ferromagnets,

• Molecular solids with -
stacking.

For these materials, LDA 
gives rather reasonable 
solution.

We may use GGA to obtain a starting (tentative, or initial) solution 

for consideration of

• Van-der-Waals crystals,

• Materials showing strong-correlation effects.



We might be able to solve the problem using

• For the van-der-Waals crystals,
• GGA + van-der-Waals correction,

• EXX + RPA correlation.

• For the strong-correlation problems,
• GGA + short-range correlation,

• EXX + (RPA + vertex corrected) correlation.
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Please consult experts!!!



We can compare the methods for c-BN.
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Cf. Nagakubo, et al. Appl. Phys. Lett. 102, 241909 (2013).

• LDA is known to give 

reasonable estimation.

• People noticed that GGA 

gives a shifted value. 

• Interpretation became 

possible after BS & PUS 

have been known.

• Correction of GGA is 

known to be possible.

• Then, evaluation of TB or 

force field may be allowed. 



The Graduate School of Engineering Science
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The 5-band model for LaOFeAs.

Ref. K. Kuroki, et al. Phys. Rev. Lett. 101, 087004 (2008).



The Graduate School of Engineering Science
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Ref. M. Shishkin, et al. Phys. Rev. Lett. 99, 246403 (2007).

Evaluation of semiconductor gap by self-consistent GW + vertex correction



The Graduate School of Engineering Science
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Ref. Y. Kanai and J.C. Grossman, Phys. Rev. A 80, 032504 (2009).

Electronic state and charge distribution of 

a Hydrogen molecule adsorbed on benzene

DMC DFT



• Space of DFT models
• Distance : 

• Variational principle: DFVT by K.K. (2009).
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LDA

GGA

Exact solution

Hartree-Fock

Gateaux derivative in 

the model space 

determines the 

direction to follow.

-vicinity around 

exact solution

Phase transition 

lines

CASE I

CASE II

.1+− ii nn

Q: Why?           A: Its because “axiom for materials” tells this strategy.
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To have an initial state of correlated electron system, we may utilize

The upconversion Hamiltonian

which leads us to the convergent model series in the DFT model space.

Cf. K. Kusakabe, I. Maruyama, “Electronic state calculation method, electronic 

state calculation device, computer program”, PCT filed No. PCT/JP2011/068589, 

date 2011.8.18.

The van-der-
Waals 

interaction

The super-
exchange 
process

The super-pair 
hopping 
process

Two & multi-
photon 

processes

…

Problems in static state Semi-classical & 

quantum dynamicsMagnetism Superconductivity
Quantum processes 

in QED!
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Symmetrized bare interaction

The full super-process for an 

electron-hole interaction

A polarization bubble diagram 

with a vertex correction in the 

above scattering channel

A third-order ladder diagram 

for the scattering channel



Why is the KS-DFT not FP? Why do “first principles” exist?
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• When an effective 
Hamiltonian is derived by 
renormalization of the 
phase space of L2(R3N), it is 
in a form of “a many-body 
correlation problem”, which 
is tractable in a simulation.

• Its solver is always faster 
than the encapsulation in 
L2(R3) by the KS scheme.

• This conclusion is a FP.

• There are virtual photons.
• There is no real photon.
• Thus any theory for any system 

in nature needs to solve a 
many-body correlation 
problem.

• There are non-Abelian gauge 
fields.

• Determination of their source 
matter fields requires to 
describe the propagator of the 
gauge bosons, which is far 
beyond the U(1) theory.
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Material Ubare Uscreened Ueff/t

Si > 10 eV > 1 eV ～ 0.1

Al > 10 eV > 1 eV ～ 0.1

Cuprate super. > 10 eV 1 ～ 4 eV 2～ 6

A narrow band system becomes 
‘the strongly correlated electron system’

For a metallic system, we have variety of phases including

• An anomalous metallic state for a heavy Fermion system,

• A high-temperature superconducting state of cuprates,

where Ueff/t becomes large. 

But, a further difficult question is to conclude a Fermi liquid state 

following the renormalization group algorithm by starting from a 

DFT basis set. 
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DFT-GGA limit Practically better 

agreement with exp.

Stronger superconductivity in OP.

K. Nishiguchi, et al. PRB (2018).

OP

IP

OP

Three-layer compound

(Hg1223)
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• Properties are to be given by

• Symmetry,

• Self-consistency,

• Time evolution path.

So, dynamics is determined by

• Initial conditions,

• Consistency,

• Conservation  laws.

• There, quantum correlation is cut, 
because we are in the space after 
the primary observation in our 
universe.

Cautions: 

1. Separation into sub-systems is 
dangerous without 
consideration.

2. We have a different heat-bath 
& environment for a history of 
the sub-system different from 
an observed one.

The density functional theory is no 

more than a method to describe a closed 

system in equilibrium.

Once the time evolution starts, it means 

that we need the quantum-statistical 

mechanics for non-equilibrium systems.
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Consider a semiconductor having conduction and valence bands with a band 

width around 1eV. Assume that the material (each domain of poly-crystal sample) 

is in a nanometer scale. 

Photon 
irradiation

Local 
polarization

Electron-
hole exc.

Frenkel 
exciton

When DFT is applied to the steady initial state of the electron system, the band 

structure is given by a solution of the Kohn-Sham equation. Wannier orbitals are 

given by a unitary transformation of the Kohn-Sham Bloch orbitals. Therefore, 

Free 
exciton

Local 
current

Internal 
EM field

Atomic 
force

In this process of theoretical description, we need to generalize DFT from 

single-referenced to multi-referenced DFT.
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Survey in APS journals
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③

① Correlated electron model & DFT

② Many-body perturbation & DFT

③ Quantum Monte Carlo & DFT
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Model calc.

Perturbation

Green’s func.

Monte Carlo
methods

DFT calculations for 
Strongly Correlated El. Sys.


