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Concept: Motion of electrons

* As particles p=—="k, k=2z/A4
ﬂ’ p - momentum,
Schematic picture of 5{ : wave lengtlg,
- wave number,
N an electron \ h : the Planck constant.

Found at a position

* As waves Interference fringe

Electron gun I

(emitter) Electron bi-prism

An electron moves as a wave, found to be a particle.



Interference of electron wave

Electron gun

Cf. A MEE [EFNFADIEBE]
“Introduction to quantum mechanics”,
A. Tonomura (Iwanami shoten, in Japanese)

Electron bi-prism

Interference fringe

Detector
(Electron counter)

L&Y Electronisawave! ) .

Display It’s a quantum particle.




Why are these pictures different?

An imaginative picture I\P/IOSi“Of‘t 1 AR dr
omentum :
of the electron \ p dt
. >
r Both determined at a time t

Found at a position

An electron as a wave, which is in ‘a scattering state’.

i -
N * s ST .-> -

N
Electron gun I -
(emitter)

Electron bi-prism

4
Particle position at the time t is not determined to be any specific state at r. )
The state with ‘a group velocity’ is composed of a superposition of 'p states'.



Direct imaging of “ electron wave

(m))

': :z:::::z: :

‘;.:::"-‘zz':i i
((8 1) 11

A. Hashimoto, K. Suenaga, Cf. M. Ziatdinov, et al., Phys. Rev.
A. Gloter, K. Urita & S. lijima, B 89, 155405-1-15 (2014).
Nature 430, 870 - 873 (2004).

0.74 nm

0.21 nm

Therefore, we recognize “existence of the electron wave”. ) 5



Concepts in QED

* | am rather delighted that we must resort to
such peculiar rules and strange reasoning in
order to understand Nature, and | enjoy telling
people about it.

 There is no “wheels and gears” beneath this
analysis of Nature; if you want to understand
Her, this is what you have to take.

“QED THE STRANGE THEORY OF LIGHT AND MATTER”
Richard P. Feynman (Princeton Univ. Press, 1985.)




Wavefunction: a representation

A Bloch wave

e The coordinates

r=(xy,2) 0:((1)} \ ((1)]

* Wavefunction : an amplitude by projection
State vector

The state may be measured by the coordinates. |r>



Whet is |W) ?
W) :%MT>1®H>2 _H>1®H>Z]Z%HT¢>_HT>]




Action of state vectors

An eigen state A transient state

0.1 T T T T T T T T T 01

0.05 | 1 005 |

005 | 1 005

.01 L 1 1 1 1 L 1 1 1 _01 1 L 1 L 1 1 L 1 L
0 10 20 30 40 50 60 70 80 20 100 0 10 20 30 40 50 60 70 80 90 100

A state vector shows ‘transition to the other state’.

W R W//////

B

Observation |0( to’t+10dt
Experimentally, we only see When a time coordinate is fixed for ) 9
‘the action’ as amplitudes. a system, a Hamiltonian operator is

determined by ‘the gauge fixing'.



Separation of degrees of freedom

* Based on difference in the mass, separation of the quantum

mechanical motion is done. (the error scales as (m/M)%/4))
Cf. S. Takahashi, K. Takatsuka, J. Chem. Phys. 124, 144101 (2006).

m: electron mass
{Hel W HeI—ion +H,

o B) B0 (R D),
={EVE \M

ion—ion H \P> ® ‘ Dig, ({R l })> nuclear énass

* Existence of stable materials allows us to fix positions (or
“distribution”) of the mass center. Then, we may also make
use of “existence of the order” in the material a priori.

The order is given by “the charge distribution of each species”.
In relativistic form, it is by “distribution of the 4-current”.

10



Bom=0ppenheimer approximeation

Multiply ({R,}| to the Schrédinger equation from the left,

and define the external potential Vext( ) Z‘ ‘ for the electrons, we have,
AN
H LI’> Here, this operator IS a two-component Fermion field operator.
NN
N —Zalfd r(zm] _Ud rd?rS |r r| +jd IV, (NA(r) | ¥)
=E|V). -

The Coulomb kernel is fixed as the photon propagator in a steady state.

Therefore, in a “well-defined” precise description of the quantum mechanical
motion of electron, we may start from the electron Hamiltonian in the
equation above. )

11



Hamiltonian

e Static state of electron system:
* Represented by potential:

ext(r) V(I’ J)

e Cf: Ehrenfest’s theorem (

dt

eZ

‘r"rj‘

T CEIP[Y) = (| = Ve (D))

e The Hamiltonian

* Velocities of electrons < the velocity of light,

* In a steady material, internal gauge field behaves as the
Coulomb potential.

33

+ Zvext (r,). )

\r—r\




Electrons in a potential

y &

2p 3 d N A charge density map of *
4+ amany electron system

PRAR)

Single electron wavefunctions
in steady states.

* Therefore, charge density should be determined. 13




Quantum mechanical calculations

Schrédinger equation : partial differential equation

HY ({r;,0:}) =—i(§2ijT+ZI e’ .prjLZN:vext(ri)\P =E¥ ({r,.c:}).

i=1 i=1

We need to employ “an efficient (fast) calculation method” equivalent to
a solver of the differential equation.

From Schrodinger picture (Wave equation)
to Heisenberg picture (Matrix equation or operator formalism)

From Differential equation (Function of coordinates)
to Green’s function method (Inverse operator or resolvent)

To realize one of them, however, we need, at least and at any time,
“a set of well-converged basis functions” to have an efficient expansion!

) " , 14
This part consists from purely mathematical )
and practically computational problems.



Modern calculation methods

Many-body theory need “a basis
functions to make an expansion”.

* Models of strongly correlated
electron systems

e Hubbard, Anderson
e Effective-mass theory

Model calc.

e GW+vertex correction
e Spectral DFT

Perturbation * Dynamical Mean field

Green- theory (DMFT)
function ¢ Dynamical cluster
approximation (DCA,
CDMFT)

¢ Diffusion Monte Carlo

N . \ \ e Path integral QMC
Utilization of the DFT single-particle  [ERCUSRSEIN . o e tor QMC

i ec - method
orbitals has no more difficulty in our e Continuous time loop ) N\
theory of “multi-referenced DFT". algorithm



The density determining “order”

* Energy as a functional of v_: E[v,,.].
* A functional derivative:

ext T &/ext ext I d ext ext )+ 0(52 )

= [drdu(r )()+O(5)

E|v

 The order parameter : n(r).

K. Kusakabe and I. Maruyama, J. Phys. A: Math. Theor. 44 (2011) 135305.



theorem in gquantum mechanics

* Consider two potentials, v,(r) and v,(r), which
are different more than a constant from each
other.

* Let |'¥,>and |¥,> be an eigen state of a
system by v,(r) and that by v,(r), respectively.

* Then, |'¥;> cannot be an eigen state of v,(r)
and vice versa.

Proof: The unique continuation theorem for the Poisson equation tells us
that the statement above is correct. See the next page.




Note: you can find that the next proof is easily extended
for a wider class of Hamiltonians appearing in a model

A proof spac.

When our system is treated by the Born-Oppenheimer
approximation, nuclei is treated as fixed point charges.

v, and v, follows the Poisson equation.

Suppose that y Is a solution of two Schrodinger equation given by
v, and v,, where v, and v, are different from each other more than a
constant.

We have v, =(v,+const.) i .

Let N be the number of electrons.

We may find an open set S in R3, where
y(r+r,0q, I, 050 = 0, Ty, o)) 70

forreS.

In S, we have v,(r) = v,(r) + const.

By the unique continuation theorem, we conclude that v,(r) = v,(r)
+ const. in R3.

This conclusion contradicts to the assumption.



Hohenberg-Kohn’s theorem

e By the last theorem, we have a next inequality which is a contradiction.
E, = (W, [T +V,| W)+ [ d°rmy,

Y, [H, | < (W, |H|'W,)

Y, [T Jrvee\‘}’2>+jd3rnv1

¥, [T Jrvee\\P2>+J'd3rnv2 +J’d3rn(v1 ~V,)

&

) HZ\\P2>+_[d3rn(vl—v2)

A
€

HZ\\P1>+_[d3rn(v1—v2)

& e

<
<
<
<
<
(P T +Vee\klll>+fd3rnv2 +_[d3rn(v1 ~V,)
AR

* This implies existence of “one-to-one correspondence between the
potential and the electron density”. (by Hohenberg and Kohn (1964))



A logic tells physics

 Fixed positions of nuclel give a scalar potential v;.

* Whenv,# v, + const., ¥,#¥, , where ‘P Is a ground state
for a problem by v.. (by the unique continuation theorem.)

* In this case, n, # n,. (Proof by Hohenberg & Kohn.)
Namely,

* If“n;=n,=n” and “¥#¥,”, then
Ey = (W [T +V, W) + [ d®rmv, = (W [H, W) < (%, [Hy| W,) = (¥, [T +V, | W, )+ [ d°rmy,

OO +Vee|\P2>+_[d‘°’rnv2 +J'd3rn(v1—v2)= (¥, |H2|‘P2>+J'd3rn(v1 -V, )
< (‘111|H2|‘I’1>+J.d?’rn(v1 —v,)={Y,T +Vee|‘I’1>+J.d‘°’rnv2 +Id3rn(v1—v2)= (¥, |H,|'¥,) = E,.

Thus, E,<E;, which is a contradiction.

« Thus, we have a one to one correspondence between v
and n.

o e




ldea by Kohn and Sham

e Density as a variable

Kohn-Sham
theory
@ 4 (r)

e Search optimum n(r) by referencing “another
wave function ¢(r)”. (by Kohn & Sham (1965))

* Caution 1 by Harriman : Vn(r)e |y, 3¢ (r)s.t.{¢i (r)}—> n(r)
* Caution2bylieb: A, cl,, Ay #A," )21

We need other energy functionals than the Hohenberg-Kohn functional.




set of density

® V-representable density : A,

® Density of a ground state, which is an eigenstate of an interacting
Hamiltonian operator for an external potential v_ (7).

When N>1

® N-representable density : I

® Density satisfying next three conditions.

r)=0, _[ rjdr=N, J“Vn )1/2‘ dr < .

)2



Energy as a functional of density

 The Levy-Lieb universal energy density functional

T : kinetic energy operator, Vee : electron-electron interaction.

Since T +V .is a positive quadratic form,

F[n]=min(¥ [T +V, | ¥).

Y —-n

* The Lieb energy functional
For a density, n(r) > O, which is ensemble-V (EV) representable,

F [n] = inf (T +V,,)
N I'—n
I': density matrix. ) 23



Varietional energy

N mnin{F[n +j ext }

j Vo } minE, [nl.  (2)
W

= min{min(‘P

n YV —-n

A subset of w.f.

This definition of the density functional theory does not rely on HK.




The Kohn=Sham scheme

E[]. = (‘I"(;S T .\ I;;'.P|1'IJ{.'H> A ["'""(_}‘.‘:'%'(r)?*'ﬁ.?.‘r(r)dgr

o< 111i11{ min (V|7 + V| V) -i—/ u(r ) f,;(r)ff"s?'}

n W—nir)

W —n(r)

= 111”iu{ min (¥'|T|¥") + Fln] — Fr[n] + /-n( Vet (T)d f}

= min { mnin {{‘I”lTPI”) + Fny] — Fr[ny]

P —nlr)

N ['”-q,,,-(r}'{-‘,.J:;_(I‘)i’fﬂf'}}

) 3 H|.|;-f ”1[:-"
X 11.1'1'11«1l | T |\ 2 / PR d rd*r’ + Flny]
Ty (1)1 (1T
AN RO f Srd3r! — Frlng:| + [n JUert(T)d®s }
W\ Hq:-" Hl.|r-"_ AN 1N+
= 1]11'“ {{‘LIJ JT| 2 / N [‘"| Erd®r + Erc[”“l”] ‘ Deflnltlon Of EXC[n]

+ / Mg (L) Upaet (r)rf”r‘} ) 25

X n.},i,” G|V, (3)




Two cautions on Kohn=Sham scheme

Modified energy functional and phase
transition points.

F.[n]=min(¥'[T + AV,,| ¥").
Y'—>n
K. Kusakabe and I. Maruyama, J. Phys. A: Math.
Theor. 44, 135305 (2011).

A true electron system

F[n]

< Kohn-Sham

Ex. Metal < Mott insulator,
Kramers doublet « local Kondo singlet

See also contents of 13" lecture.

of “Theory in Materials Science @ ES-OU”.

Differentiability of the Lieb functional is
shown in the following conditions, only.

n(r) is an EV-representable,
 Direction ny(r) is an EV-rep.,
* n(r) >0, and ny(r)>0,

« Second order derivatives of
n,(r), n(r), and G.S. w.f., are
square integrable.

Special directional derivative
of F [n] is given.
P.E. Lammert, Int. J. Quant. Chem.
107, 1943 (2007).

Note that functional derivative is
considered with variation out of H?

in general sense, if one do not ) W\
make a caution on the domain.



DFT & LDA/GGA

Definition of energy functional Model functional introduced,
then, we have the steps !

Kohn-Sham variational

Hohenberg-Kohn theorem method

Harriman-Lieb construction

, _ _ Many-body perturbation
Levy-Lieb constrained min.

theory using K-S orbitals

Lieb functional with

definition of the domain ANSEEIEL SIS eleEs

to search “exact results”

Caution: On the searching path, definition of the Kohn-Sham equation by using functional derivative of the
Lieb functional is not always possible. While directional derivative is given for limited directions, not only
interpolation but extrapolation of n(r) is requested to determine effective potential.

¢ The Graduate School of Engineering Science 27




Functional derivative

Variation w.r.t. density  Non-linear functional

e General variation of n(r) includes, ¢ Fréchet derivative w.r.t. on(r) is

on(r) accessible for linear functional.
nir) But, F [n] is not a linear functional.
n(r)
r r AJ\/
e Variation maintaining N has to be
r
non-local. ‘
n(r) Since ¥ giving “non-N-rep. n(r)” is
+ on(r) not found, “ensemble v-rep. n(r)” is

requested. The Gateaux derivative of
the Lieb functional has directional
dependence on on(r) as a function of r.

r
¢ The Graduate School of Engineering Science 28



Classification of density

VR ESEELE A density distribution given by a quantum eigen state in a potential

by an eigen state (a ground state) of an interacting N-body electron system

- ./ (N):
- ./(N): by an eigen state (a ground state) of a non-interacting N-body Fermion

system

i el by an anti-symmetric wave function of an N-particle system

- 7(N): positive, integrable, thus normalizable to give N, (V n(r)*/2)2is also square integrable
e The Harriman-Lieb construction gives a many-body wave function giving n(r). Thus existence of
the wave functions for constrained minimization is certified.

Linear combination of two or more v-representable density distributions
Ensemble v-representable ..
(Ensemble average as statistical average)

e Defined as an interpolating point of two well-defined end points
e Two end points are v-representable (non-negative, without diverging points)
e A statistical average found on the way of the search is not pure v-representable.

The rigorous DFT method requires “huge amount of calculation steps” far
bigger than the statistical quantum mechanics method for N-body problem.

The Graduate School of Engineering Science 29



We do not use the Lieb functional.

Gr[¥']= (¥ [T]¥")~ Fr[ny ]+ Flny J+ [veu ()n

G, [¥']=(¥'T|¥")+ 22.[”‘1“(:) r\( )d rd®r +Exc[n ]+J’vext n.(r)d°r.

o)
Let's assume that|¥") is a minimizer w.r.t. variation:5<\{,,‘ G [¥]-E((¥|¥)-1)}=0,

where density variation is assumed to be given as,

n(r) = (W) ),

on(r)= {<\P\+5<\P \} ﬂ +6 } : two end points are positive. (Good. But,)
= {o(wfin(r ) )+ { JAlr { }+{ }(){\ )

{f+.[d3rveff [n, anls(|[Jr)A( }1 ) = E|¥"), : known numerical methods are not applicable
n(r) o€, [n] to solve these equations, since
Ve [n, 0 (r) Id r +—=22+v,,(r). :is not a local potential, and

r—r| &n(r)

Eln] { n]-F_;[n] ——j )d 3rd r} : the directional derivative has
on(r) — on(r) \r "‘ an[s(w'||r) dependence.

We offer another way by evading this difficult point of KS equation.
¢ The Graduate School of Engineering Science 30



¢

Why do we use DFT?

 Degree of freedom is separated into electrons and nuclei by
the Born-Oppenheimer approximation.

— Electron density characterizes the system!

e Let’s determine the free energy (total energy at T=0K)
by the electron density.

Hamiltonian Order parameter
* Born-Oppenheimer approx. * Funct. deriv. w.r.t. ext. pot.
H = _Z( hz jVZ + Z + ivext(ri)' E[Vext +&/ext] E[Vext]

T\ 2m ‘I’ ‘ 3 éE[Vext] 2
_jd ( ) ext(r)+o(5 )
ext
» Classical configuration of nuclei, B 5
» Determination of static potential. J.d ré‘ve"t ) ( )+O(5 )
The Graduate School of Engineering Science 31



Statistical mechanics offers a solution.

e L.D. Landau had predicted relevance of order parameters.

— Energy of condensed matter is given by “a function of
physical variables” i.e. a functional of a function.
* Landau considered analytic functions at first.

 Phenomenological, but “exact”, since the idea comes from
observation of phenomena.

* Present DFT is interpreted as a realization. E, [n]
— Order parameter = Electron density E, [n]\
— Energy functional = Landau functional

N
7

n: density
The idea goes back to the original Thomas-Fermi arguments.

As such, the history of the quantum statistical mechanics is
long.

The Graduate School of Engineering Science 32



Derive differential eguations

* First, set up a differentiable energy functional.

Eln] B E.ln] G [¥] B G[¥]

* Derive a determining equations, which are to
be self-consistent equations

%‘{f‘{g[ () -0 » {r jd N (1 }‘ ) =E[¥)

=|d°r (r')+ XC[n]+v r
_jd r—r|  on(r) o(F)

Veff

n(r)= ZGXLP

This strategy gives us “realistic approaches” of DFT.
We had developed “systematic improvement” of any approximation in DFT.

Ar | ).




E,. as quantum fluctuation

® The exchange—correlation energy functional may be written
as, o?
E,.[n]= ?jdrn(r)jdr' n,.(r,r)
with

n, (r,r)= n(r')f[gn(r, r',1)-1jdA

=_[01[<\IQ A(r

o

—n(r))A(r)=n(r)) ¥, )/ n(r)-5(r - ).

Quantum Fluctuation!

® In the local density approximation (LDA), we approximate
n,. by that of the homogeneous electron gas as,

n,.(r,r)= Hg“"m r.r,A)-1jA. ).

‘Density-functional theory of atoms and molecules,” by R.G. Parr,

& W. Yang, Springer, § 8.5.




Why local density approximeation?

LDA exchange-correlation energy can be written as,

n]:é‘[d3 jdf” ! (r,r') jd?’rn (n(r))

lr rlxc

This LDA exchange-
hom
I’l (I’ r _[ [g r I’ i 1]d2~ correlation hole satisfies a

sum rule. (See next page.)
« The value is given for any n(r).

When we choose LDA, the Kohn-Sham equation reads,

712 For this set of equations, we have
_ﬂAr Vg (1) (r) = (1), computer codes as numerical
N solvers of quantum mechanical
\ (r):jd3r' n(r) \ E,.[n] problems for electron systems.

r—r|  on(r) Vo 1), —

n(r)=> Slar). Reasonable accuracy !!!
NS ) 35

If you need, you may always make a correction by introducing
“‘multi-reference representation of a model many-body system?”.




sum rule in DFT & that in LDA

A J': n(lr)<ﬁ(r)jd3r'ﬁ(r')>% dﬂ—jd3rv n(r')nb“((rl;—r') _J’dBr'n(I") lrﬁ(r)jdr'ﬁ(r')xom NN ]
J

(A(r)N) di-1-N

(r)j:d;t—l—N:N—l—N " ()

r)

=
—

Thus, although we have completely different formulae for DFT and LDA,
the same sum rule for the exchange-correlation hole is satisfied. )




Correletion energy density of LDA

N N, 4w N
Let’s introduce rg by R =1/ 3 I; | we may divide g as, 8xc(rs)= gx(rs
0 . .
Vosko, Wilk & Nusair (1980) |
2 AN R
.—--"'":'\f— Hedin & Lundqvist (1971)
-0.04 L Perdew & Zunger (1981) \
-0.06 }

Nozieres & Pines (1958)

g —
o
e
=




How to solve the Kohn=Sham egs?

{—h—ZA Vg (r )}¢( r)=c(r)

2m

o0)=farr M0 B

r—r{  on(r)
n(r)=> Ylalr)" e e oy atato vector

o) giSEF

We need to find a solution {¢(r)} satisfying

1. Symmetry of the system (Crystal symmetry, molecular symmetry)

2. Self-consistency ) 38

This is a least version for DFT. It is corrected by “quantum charge fluctuation”.



Band structure of cubic diamonad

This descript ion is not

\ accurate (even wrong). | o* bands
- But, i 1 (anti-bonding

10

. —1 o bands
Without this step, we have (bonding bandS)

Ot no good way to determine
AN “convergint calculations”.

r X K T MR

An energy gap appears and the system is a wide-gap
semiconductor. LDA by PWO1. ) \

Plane-wave expansion with ultra-soft PP.



Bonding charge in hex-diamonad

* |n a covalent crystal,
we can see charge
density of electrons at
each bond connection.

* Yellow object
represents charge
density and white
spheres are carbons.

accurate, because it is
determined self-consistently.



Band structure of graphite

o™ bands
(anti-bonding
\\ bands)
\ 7t* bands
N A A (anti-bonding)
\ | ™ r bands
\\ (bonding bands)
N\ —— o bands
_ (bonding bands)
K I M K H N A

The n-band is half-filled and there are small ) N
Fermi pockets both for electrons and holes. (Semimetal)



Bonding charge in graphite

* Bonding charge
comes from c-
electrons.

* This system is a
semimetal where
the Fermi surface is
made of w-bands.

b e v 1 \j_
A o

=

-y 4 = il

When you see a localized state mediating quantum information process,
you may introduce “a solver for correlated electron systems” at any time.

42



Bana structure of Graphene

LDA energy band

Y ey,

r'/';’/’/’/’;/’(’é oK
A
DA

4 X
IO

(‘ \b Ak
VOS2
Wy

X
X

N
WA
N
T
R

W KX
N,
£(k) NS

T T —

This is a result by
a tight-binding model.

Energy Level (eV)

15.0

10.0

5.0

/
\

-10.0

—-—-"/ |

-15.0 | ] I

| |

I |

| |

-20.0 : L
r M K r

We want to see “what is seen in the right figure™!!

43



ldea to use gradient of density

 To overcome limitation of LDA, Kohn & Sham had
considered gradient corrections.

e Let’s first introduce another order parameter,

F[n,j]= min abUH Jdr|a,b), F[n,m]=_min (a,b[T +V,|a,b).

la,b)—(n,j) la,b)—(n,m)
or density for two spins, n.(r), n (r), or density of multiple

species (electrons & nuclei).

* Naively,
Vn Vn,
GEA SDA o o
Epe “Iny,my] = Epe g, m] + ) ; f d’r Oa,af(m,m)nz/g NER

O.l




Generalized gradient approximation

e GEA fails due to violation of sum rules.

* Introduce a GGA exchange-correlation energy
functional, whose ex.-corr. hole satisfies desired sum
rules.

ESS4ng,ny] = /d37° f(ny,ny, Vng, Vn).
For the case of exchange hole,

AEOA = — () (r, Wi, ) B(us(r) — )

where 0(x) is the step function.

‘Electronic Structure — Basic Theory and ) N

Practical Methods,” by R.M. Martin,
Cambridge University Press.




Which do we use, LDA or GGA?

* 3d ferromagnetic metals:

Element TJ/K M/ug Configuration
Fe 1043 2.219 3d°
Co 1404 VRS 3d’
Ni 630 0.604 3d8

e LSDA does not reproduce stability of ferromagnetism.

* Spin-GGA reproduces magnetism even quantitatively.
(This is practical understanding.)




Internal field considered

=
o

Fe (ferromagnetic)

up spins

[
n

@
=)

(Sl

[\ ]
(=}

[
(o1

DOS [States/Cell/Ry]

—
o

|
L N L | A
0.7 -06 -05 -04 -03 -02 -01 O 01 0.2

Energy relative to Fermi energy [Ryl

Thanks to Akai-KKR

5
0

The result suggests existence of m(r)
in a solution of DFT simulation.

(M), (i), o
(1,(0)) = (7 () v (%))

may be used to determine the internal
vector photon field to derive an
effective potential problem
determining an L? basis.

-

An effective action and the
resulting effective Hamiltonian
contain all the electron-electron
Interaction processes in many-
body description.

Y-



Decision by empirical rules

GGA OK GGA not in use

e Good 3d metals, * Graphite, h-BN, CF,

e Strong metallic  Weak ferromagnets,
ferromagnets, * Molecular solids with 7-7

e 3d semiconductors, stacking.

* Molecules, For these materials, LDA

* Molecular solids without gives rather reasonable
n-1 stacking. solution.

We may use GGA to obtain a starting (tentative, or initial) solution
for consideration of

« Van-der-Waals crystals,
» Materials showing strong-correlation effects.




If both LDA and GGA fails?

We might be able to solve the problem using
* For the van-der-Waals crystals,

* GGA + van-der-Waals correction,
 EXX + RPA correlation.

* For the strong-correlation problems,

* GGA + short-range correlation,
 EXX+ (RPA + vertex corrected) correlation.

Please consult experts!!!




_ Vdp Vd’E

B, = NN
The bulk modulus Vv ) ey,

EV)=E, +—2 . — -0
B, B, -1 B, -1
We can compare the methods for c-BN.
N c, G B * LDA is known to give
This work PUS 36169 +0.0005 945+3  410°  401° reasonable_ estimation.
QE-GGA 3.622 1t NN NN » People noticed that GGA
VASP-GGA 3.626 881 381 372 gives a shifted value.
QE-LDA 3.569 951 412 402
VASP-LDA 3.583 940 403 402 \
Reference BSP 941 405 400 ‘ * Interpretation became
(mheasured) possible after BS & PUS
BS® 36157 +0.0008 913 399 381
XRD* 3.615 +0.002 369 + 14 have been known.
XRD®  3.6157 * 0.0008 387 + 4 _ _
Reference GGA' 3.620=0.007% 920+38% 390+21% 385+ 168 e Correction of GGAIs
(calculated) :
LDA" 3.589+0.0128 946158 408+9% 398+ 12 known to be p_055|ble.
hybrid  3.602=0.0068 399+7¢ * Then, evaluation of TB or
MD 3.625+0.0238 858+58% 360+438 378+2¢ force field may be allowed.

Force field" 1074 342 618
Tight binding' 1079 341 624
Tight binding™ 1310 430 737 50

Cf. Nagakubo, et al. Appl. Phys. Lett. 102, 241909 (2013).




tight=binding model by DFT

14

The 5-band model for LaOFeAs.
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Ref. K. Kuroki, et al. Phys. Rev. Lett. 101, 087004 (2008).

The Graduate School of Engineering Science




CW+beyond as “a many=body PT"

Evaluation of semiconductor gap by self-consistent GW + vertex correction

| | | |
® DFT
16— A scGW RPA. no electron-hole N
A scGW electron-hole ®
A :
gl LiF @ N Ne|
@/ 41— C BNMgO N
= \
RN A Zns N
Y T AN
SiC'g \
1 CdS \
° o
05-Si o ZnQ \
GaAs
| | | |
| 2 4 8 16

Experiment (eV)
Ref. M. Shishkin, et al. Phys. Rev. Lett. 99, 246403 (2007).

The Graduate School of Engineering Science
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Diffusion Monte=Carlo method

Electronic state and charge distribution of
a Hydrogen molecule adsorbed on benzene

Ref. Y. Kanai and J.C. Grossman, Phys. Rev. A 80, 032504 (2009).

The Graduate School of Engineering Science

o110

016
|22
O2s
X

M 4.0

pE



An almighty method ...

g-vicinity around
e Space of DFT models exact solution

\ vAg¢
* Distance: <‘Q‘>

Hni N ni+1H' ’

e \Variational principle: DFVT by K.K. (2009).
CASE Il

Exact solution

Hartree-Fock i@f
- A
A\

DA Gateaux derivative in ’
the model space
GGA :
determines the Ph ¢ N
\ ’ @ (jirection to follow. I'n:&‘,se FETIINAN
— [

pE

Q: Why? A: Its because “axiom for materials” tells this strategy.




Super processes

To have an initial state of correlated electron system, we may utilize

The upconversion Hamiltonian

e VALY AR PN

C ,counter
which leads us to the convergent model series in the DFT model space.

Cf. K. Kusakabe, |I. Maruyama, “Electronic state calculation method, electronic
state calculation device, computer program”, PCT filed No. PCT/JP2011/068589,

date 2011.8.18.

H'+H!?

C,counter

Problems in static state Semi-classical & Quantum processes
Magnetism Superconductivity quantum dynamics in QED!

Two & multi-

The van-der-
WEEIS

The super- The super-pair

photon
processes

exchange hopping
process process

interaction




Processes by “Feynman Diagram”

(@) & A A
A A"
=[N )\MA/‘(AC + Symmetrized bare interaction
A W A A AC
) Ay :
The full super-process for an
. electron-hole interaction
A A®
(c) X
A Viaaa© Vi e A polarization bubble diagram
\ with a vertex correction in the
\ \ above scattering channel
(d) \ o

A third-order ladder diagram
for the scattering channel

\ \,4'3 ) 56
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First principles calculetion

Why is the KS-DFT not FP?

 When an effective
Hamiltonian is derived by
renormalization of the
phase space of L%(R3N), it is
in a form of “a many-body
correlation problem”, which
is tractable in a simulation.

e |ts solver is always faster
than the encapsulation in
L2(R3) by the KS scheme.

 This conclusionis a FP.

Why do “first principles” exist?

* There are virtual photons.
 Thereis no real photon.

 Thus any theory for any system
in nature needs to solve a
many-body correlation
problem.

 There are non-Abelian gauge
fields.

* Determination of their source
matter fields requires to
describe the propagator of the
gauge bosons, which is far
beyond the U(1) theory.



A comment on U,,and ¢
M

>10 eV >1eV ~ 0.1
Al >10 eV >1eV ~ 0.1
Cuprate super. >10 eV 1~4eV 2~6

A narrow band system becomes

‘the strongly correlated electron system’

For a metallic system, we have variety of phases including

« An anomalous metallic state for a heavy Fermion system,
* A high-temperature superconducting state of cuprates,
where U/t becomes large.

But, a further difficult question is to conclude a Fermi liquid state ) N
following the renormalization group algorithm by starting from a
DFT basis set.
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Better description tells physics.

Stronger superconductivity in OP.
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Dynamiceal problems

* Properties are to be given by
* Symmetry,
* Self-consistency,
e Time evolution path.

So, dynamics is determined by

* [|nitial conditions,
* Consistency,
e Conservation laws.

* There, quantum correlation is cut,
because we are in the space after
the primary observation in our
universe.

Cautions:

1. Separation into sub-systems is
dangerous without
consideration.

2. We have a different heat-bath
& environment for a history of
the sub-system different from
an observed one.

The density functional theory is no
more than a method to describe a closed
system in equilibrium.

Once the time evolution starts, it means
that we need the quantum-statistical
mechanics for non-equilibrium systems.



When an initial state is created,

Consider a semiconductor having conduction and valence bands with a band
width around 1leV. Assume that the material (each domain of poly-crystal sample)
IS In @ nanometer scale.

Photon Local Electron- Frenkel
. polarization . hole exc. . exciton

When DFT is applied to the steady initial state of the electron system, the band
structure is given by a solution of the Kohn-Sham equation. Wannier orbitals are
given by a unitary transformation of the Kohn-Sham Bloch orbitals. Therefore,

. Free Local Internal Atomic
. current . EM field . force

In this process of theoretical description, we need to generalize DFT from
single-referenced to multi-referenced DFT. ) 61




The trend in theory of DFT

Growing numbers of APS papers
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DFT calculations for
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