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Three-way catalysis of gas exhaust system
NO reduction activity for PdRu solid
solution nanoparticle catalyst
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NO reduction on metal surfaces

Mechanism of NO reduction on metal surfaces

(1) NO + * - NO*
2) CO++ — CO*
(3) NO* - N* + 0" P
(4) CO* + 0 - CO,
(5) N+ N* - N;
(6) N - N,

B. Hammer, J. Catal. 199 (2001) 171.

PdRuM-based nano-particle
catalyst

NO dissociation on transition metal surfaces

Determine the
reactivity.of PdRuir
alloy catalysts for
NO reduction
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Bulk alloy stability

Comparison of bulk formation energy:
Binary vs. Ternary alloy
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Computational details and model
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Computational Details

Density Functional Theory-based
Calculations

VASP code

GGA-PBE exchange-correlation functional
Projector Augmented Wave method for
the pseudopotential

Cut off Energy is 500 eV

Convergence criteria 1E-5 eV/atom

3 x 3 x5 layers of FCC (111)

Surface Models
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NO adsorption sites

Mixed surface Clustered surface
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NO charge gain vs. activation energy barrier for
dissociation on pure metal surfaces

NO adsorption on pure surfaces
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NO adsorption on PdRulr ternary alloy

Comparison of adsorption energy, N-O bond length and 4 Mixed surface )
NO additional charge
Most stable High charge transfer
. ] NO adsorption
Inital I;(i:ltseorptlon Adsorption |Adsorption En-| N-O bond |NO additional
Site ergy (eV) length (A) charge (e)
Mixed Surface
Most stable Ru top -2.915 1.18 -0.287 \_ PV )
High charge transfer [Ru-Ir/Pd bridge -2.529 1.22 -0.584 4 )
Clustered Surface
Most stable Ru top -2.530 1.18 -0.257
High charge transfer Eu-Rhu-:lr /Pd -2.523 1.24 -0.674 Top view A Top view o
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NO dissociation on PdRuIr ternary alloy: from most stable adsorption
Mixed surface Clustered surface
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NO diffusion Mixed surface

Reaction path for NO diffusion
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NO dissociation on PdRulr ternary alloy

Relative Energy (eV)

-2.5

-3.5

of high charge
transfer
-4
-4.5
1 2 3 4 5 6

Mixed surface

Reaction path for NO dissociation

0
—a— Rh —@&— PdRulr mixed
Reaction coordinate 1 Reaction coordinate 2 Reaction coordinate 3 Reaction coordinate 4
-0.5 —— PdRulr cluster --®-- PdRulr mixed_HC
—=%=-PdRulr cluster_HC
1 E,=1.486 eV
E,= 1.606 eV E.=1.219eV
1"—-—‘\\
-1.5 P
-~ E;=0.738 eV,
” - LY

- 4

-
- -

Reaction coordinate 1 Reaction coordinate 2 Reaction coordinate 3 Reaction coordinate 4

Initial adsorption

Reaction Coordinate

Trend in activity:

PdRulrgyster > PARulryixeq > Rh (111) opd oRu '.r




Electronic properties

Local density of states
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O adsorption on ternary PdRulr

Comparison of O adsorption energy and O addition charge
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Bader charge analysis

Charge re-distribution due to alloying Change in atomic charge after NO adsorption
Mixed surface
Effective Charge (e ) o4
Surface Cluctered 035
" ustere
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% m Pd
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T 0.15 wir  Clustered surface
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0.1
Ry 0.161 0138 (=W
*Effective charge is relative to the valence electron number of the isolated

atom, negative (-) value entails gain of electron and positive (+) value entails

lost of electron pure mixed clustered




Summary

»  The reactivity for NO reduction on the PdRulr ternary alloy was analyzed using first principles
calculation based on density functional theory. Two surface surfaces of different atomic

configuration was considered: (1) mixed ordered surfaces and (2) local clustering of surface
atoms.

»  Analysis of NO dissociation path shows that the mechanism in heterogenous alloyed surfaces
could follow a different path than pure surfaces, i.e., NO dissociation on alloyed surfaces could
be initiated by molecular diffusion on an active site.

»  With that, most stable NO adsorption may not determine activity, rather additional charge gain
by NO upon adsorption at the surface could be an indication of activity.

»  For the ternary alloy PdRulr, activation energy barrier is lower on a PdRulr ternary alloy than the
Rh (111) surface.

» Ternary metal alloying altered the surface charge distribution such that Ru surface atoms are
partially oxidized. With this, oxidation by adsorbate O atoms will be less probable.
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