

スピン軌道相互作用 spin-orbit interaction		
$H_{\rm SO} = \lambda \boldsymbol{L} \cdot \boldsymbol{S} \qquad \lambda =$	$=\frac{\hbar^2}{2m^2c^2}\frac{1}{r}\frac{dV}{dr}$	相対論効果 relativistic effect
重元素に対して顕著 スピン軌道相互作用の効果(二次摂動) Effect of spin-orbit interaction (2nd order)		
$H_{S} = -\lambda^{2} \sum_{\mu,\nu} \Lambda_{\mu\nu} S_{\mu} S_{\nu} \qquad \Lambda_{\mu\nu} = \sum_{n(\neq 0)} \frac{\langle 0 L_{\mu} n\rangle \langle n L_{\nu} 0\rangle}{E_{n} - E_{0}}$		
Price's spin Hamiltonian $(\mu, \nu = x, y, z)$		
結晶磁気異方性(二次) Magneto-crystalline anisotropy	結晶の対称 crystal symmet	<mark>性</mark> ry
$H_{\rm A}^{(2)} = DS_z^2 + E(S_z)$	$S_x^2 - S_y^2) \qquad D > 0$):面内容易型 easy plane
正方晶 余 tetragonal or	お す 方晶 か し く (thorhombic): 一軸容易型 uniaxial ²⁵

核磁気モーメント
nucclear magnetic moment

$$\mu_{N} = g_{N}\mu_{N}I = \frac{\gamma_{N}}{\hbar}I$$

 $g_{N}: 核 g-因子$
nuclear g-factor
 $I: 核スピン$ nuclear spin
 $(I = 1/2, 1, 3/2, 2, \cdots)$
 $\gamma_{N}: 核磁気回転比$
nuclear gyromagnetic ratio
 $\mu_{N} = \frac{e\hbar}{2M_{p}c}$: 核磁子
nuclear magneton
 $M_{p}: 陽子の質量$
proton mass
 $\mu_{N} \approx \frac{1}{1600}\mu_{B}$
 $I_{z} = -1/2$
 $I_{z} = +1/2$
 $H = 0$ $H \neq 0$ ²⁸

