Spintronics Design Course (in CMD-WS35) 5th lecture

5th Lecture: Spintronics, Design, Magnetization Control I

> Tatsuki Oda Institute of Science and Engineering, Kanazawa University

> > Spintronics Design Course in CMD-WS35

3th September, 2019

(90 minutes)

第5講義:スピントロニクス・デザイン・磁化制御 I:90分 小田竜樹(金沢大理工)

Email: oda@cphys.s.kanazawa-u.ac.jp http://cphys.s.kanazawa-u.ac.jp/~oda-web/index.html

Contents in 5th lecture

- (5-1) Electronics structure: Ferromagnetism, Antiferromagnetism
- (5-2) Magnetic moment: spin, orbital, localized and itinerant
- (5-3) Zeeman energy
- (5-4) Distance and interaction between magnetic carriers, magnetic dipole interaction
- (5-5) Spin-orbit interaction, spin-texture in the reciprocal space
- (5-6) Spin transfer Torque
- (5-7) Magnetic anisotropy energy: electron orbital, magnet shape
- (5-8) Magnetic anisotropy: in-plane, perpendicular
- (5-9) Voltage-induced spin torque
- (5-10) Landau–Lifshitz–Gilbert equation
- (5-11) Design on magnetic anisotropy in magnetic materials

(5-1) 電子構造(強磁性、反強磁性)、
(5-2) 磁気モーメント(スピン、軌道、局在・遍歴)
(5-3) ゼーマンエネルギー
(5-4) 磁性担体距離と磁気相互作用、磁気双極子相互作用
(5-5) スピン軌道相互作用、逆格子空間スピンテクスチャ
(5-6) スピントランスファートルク
(5-7) 磁気異方性エネルギー(電子軌道、磁性体形状)
(5-8) 磁気異方性(面内、面直)
(5-9) 電圧スピントルク
(5-10) ランダウ=リフシッツ=ギルバート方程式
(5-11) 磁性薄膜材料の磁気異方性デザイン

(5-1) Electronics structure: Ferromagnetism,

One electron approx.

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right\}\Psi_{n\mathbf{k}\sigma}(\mathbf{r}) = \varepsilon_{n\mathbf{k}\sigma}\Psi_{n\mathbf{k}\sigma}(\mathbf{r})$$

- $(n\mathbf{k}\sigma)$: quantum number
- $\Psi_{n\mathbf{k}\sigma}(\mathbf{r})$: wave function
- $\mathcal{E}_{n\mathbf{k}\sigma}$: eigenvalue
- n: band index

k : wave number

Anti-ferromagnetism

Band dispersion

3

k

(5-1-2) Electronics structure: Density of states

(5-2) Magnetic moment: spin, orbital, localized and itinerant

Origin of magnetism Most of magnetism in materials comes from the electrons which are contained.

note) The orbital angular momentum appears from the orbit motion of electrons

(5-2-2) Orbital magnetic moment

Coulomb gauge $\vec{\nabla} \cdot \vec{A} = 0$

An electron in a magnetic field along z-axis

 $\mathcal{H} = \frac{1}{2m} \left(\vec{p} + \frac{e}{c} \vec{A} \right)^2 + V(\vec{r}) \qquad \vec{p} = -i\hbar \vec{\nabla} \qquad \vec{A} = \frac{1}{2} H \left(-y\vec{e}_x + x\vec{e}_y \right)$ $\mathcal{H} = -\frac{\hbar^2}{2m}\nabla^2 + \frac{e\hbar H}{2imc}\left(x\frac{\partial}{\partial v} - y\frac{\partial}{\partial x}\right) + \frac{e^2H^2}{8mc^2}\left(x^2 + y^2\right) + V(\vec{r}) \qquad (e > 0)$ $-\frac{\partial \mathcal{H}}{\partial H} = -\frac{e}{2mc} \left(x \frac{\hbar}{i} \frac{\partial}{\partial y} - y \frac{\hbar}{i} \frac{\partial}{\partial x} \right) - \frac{e^2 H}{4mc^2} \left(x^2 + y^2 \right) \qquad -\mu_{\rm B} \vec{\ell} \cdot \vec{H} = -\vec{\mu_{\ell}} \cdot \vec{H}$ $\vec{\mu}_{\ell} = -\frac{e\hbar}{2mc}\vec{\ell} = -\mu_{\rm B}\vec{\ell} \qquad \mu_{d} = -\frac{e^{2}H}{4mc^{2}}\left(x^{2} + y^{2}\right)$ $\mu_d = -\frac{e^2 H}{4mc^2} \langle x^2 + y^2 \rangle = -\frac{e^2 H}{6mc^2} \langle r^2 \rangle$ orbital magnetic $\frac{\ell}{\hbar} \rightarrow \ell \qquad \begin{array}{c} r^{*_d} - \overline{4mc^2} \langle x^{-} + y^2 \rangle \\ \text{diamagnetic moment} \end{array}$ moment 6

(5-2-3) Spin magnetic moment

Spin angular momentum Stern-Gerlach, anomalous Zeeman's effect, Doublet of the D-line in sodium

Zeeman's energy term in Dirac equation

$$\frac{\hbar e}{2mc}\vec{\sigma}\cdot\vec{H} = \mu_{\rm B}2\vec{s}\cdot\vec{H} = g\mu_{\rm B}\vec{s}\cdot\vec{H}$$

spin angular momentum $s_{z}|m_{s}\rangle = \begin{cases} \frac{\hbar}{2}|m_{s}\rangle & m_{s} = \frac{\hbar}{2} \\ -\frac{\hbar}{2}|m_{s}\rangle & m_{s} = -\frac{\hbar}{2} \end{cases}$ $\vec{\mu}_{s} = -g\mu_{B}\vec{s} \qquad \frac{S}{\hbar} \rightarrow S$ $(\vec{s})^{2} = s(s+1)$

Contribution from the *i*'th electron $\vec{\mu}_i = -(2\vec{s}_i + \vec{\ell}_i)\mu_B$

Dirac equation (as a reference, see Appendix 4)

$$\left\{p_0 + \frac{e}{c}A_0 - \rho_1\left(\vec{\sigma}, \vec{p} + \frac{e}{c}\vec{A}\right) - \rho_3 mc\right\}\Psi = 0$$

$$p_{0} = i\hbar \frac{\partial}{\partial(ct)} \qquad \rho_{1}, \rho_{3}, \sigma \qquad 4 \times 4 \text{ matrixes}$$

$$\vec{p} = -i\hbar \frac{\partial}{\partial \vec{r}} \qquad \sigma_{1} = \begin{pmatrix} \sigma_{x} & 0 \\ 0 & \sigma_{x} \end{pmatrix} \qquad \sigma_{2} = \begin{pmatrix} \sigma_{y} & 0 \\ 0 & \sigma_{y} \end{pmatrix} \qquad \sigma_{3} = \begin{pmatrix} \sigma_{z} & 0 \\ 0 & \sigma_{z} \end{pmatrix}$$

$$\rho_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \rho_{2} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \qquad \rho_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$- eA_{0} (\equiv V(\vec{r}))$$

$$A_{0} \qquad \text{scalar potential}$$

$$\vec{A} \quad \text{vector potential} \qquad \Psi = \begin{pmatrix} \varphi_{1} \\ \varphi_{2} \\ \varphi_{3} \\ \varphi_{4} \end{pmatrix} = \begin{pmatrix} \varphi_{L} \\ \varphi_{S} \end{pmatrix} \qquad \varphi_{S} = \begin{pmatrix} \varphi_{3} \\ \varphi_{4} \end{pmatrix}$$

8

(5-3) Zeeman energy $\left[\frac{1}{2m}\left(\vec{p} + \frac{e}{c}\vec{A}\right)^2 + V + \frac{\hbar e}{2mc}\vec{\sigma}\cdot\vec{H} \qquad \vec{H} = \vec{\nabla}\times\vec{A}\right]$ Zeeman energy $+\frac{\hbar}{4m^2c^2}\vec{\sigma}\cdot\left\{\left(\text{grad }V\right)\times\left(\vec{p}+\frac{e}{c}\vec{A}\right)\right\}$ $+ \frac{\hbar^2}{8m^2c^2} \operatorname{div}\left(\operatorname{grad} V\right) \middle| \varphi_L = \left(\varepsilon - mc^2\right) \varphi_L$ Darwin term

$$\varphi_L = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}$$

Wave function of 2-component spinor

(5-4) Distance and interaction between magnetic carriers, magnetic and crystal structures

Magnetic dipole term in Breit's interaction

$$E_{\text{Breit}}^{\text{magnetic dipole}} = \frac{e^2}{4m^2c^2} \frac{\vec{\sigma}_1 \cdot \vec{\sigma}_2 - 3(\vec{\sigma}_1 \cdot \hat{r}_{12})(\vec{\sigma}_2 \cdot \hat{r}_{12})}{r_{12}^3}$$

Interaction between atomic magnetic moments

$$E_{ij}^{\text{dipole}} = \frac{e^2}{4m^2c^2} \frac{\vec{\mu}_i \cdot \vec{\mu}_j - 3(\vec{\mu}_i \cdot \hat{R}_{ij})(\vec{\mu}_j \cdot \hat{R}_{ij})}{R_{ij}^3}$$

(5-4-2) Magnetic dipole-dipole interaction

Classical magnetic interaction

$$E_{ij}^{\text{dipole}} = \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j} - 3(\boldsymbol{\mu}_{i} \cdot \hat{\boldsymbol{R}}_{ij})(\boldsymbol{\mu}_{j} \cdot \hat{\boldsymbol{R}}_{ij})}{R_{ij}^{3}} \qquad \boldsymbol{\mu}_{i} \qquad \boldsymbol{\mu}_{i} \qquad \boldsymbol{R}_{ij} \qquad \boldsymbol{R}_{$$

11

(5-4-3) MDDI: Ferromagnetic 1D-chain and 2D-square lattice ➤ 1D-chain

$$E_{dd}(\theta) = \frac{e^2}{4m^2c^2} \frac{C_M\mu^2}{a^3} \left(\frac{3}{2}\cos^2\theta - \frac{1}{2}\right) \qquad C_M = 4.804$$

$$\mu : \text{Magnetic moment in } \mu_B$$

$$a : \text{Lattice constant in } a_B$$

$$E_{dd}(\theta)[\text{Ryd}] \qquad m = e = 1 \qquad c = 137.$$

$$E_{dd}^{dd} = 0.08 \text{ meV/Fe}$$

$$\mu = 3 \mu_B \qquad a = 2.77 \text{ Å}$$

2D-dimensional case

2D Madelung constant approach Ref.) L. Szunyogh et al., Phys. Rev. B, 51, 9552, (1995)

2D squa

2D square lattice

$$E_{MAE}^{dd} = 0.15 \text{ meV/Fe}$$

$$\mu = 3.1 \mu_{B}$$

$$E_{dd}(\theta) = \frac{e^{2}}{4m^{2}c^{2}} \frac{C_{M}\mu^{2}}{a^{3}} \left(\frac{3}{2}\cos^{2}\theta - \frac{1}{2}\right)$$

$$E_{dd}(\theta)[\text{Ryd}] \quad m = e = 1 \quad c = 137.$$

$$C_{M} = 9.03362 \quad a = 2.87 \text{ Å}$$

$$\mu : \text{Magnetic moment in } \mu_{B}$$

$$a : \text{Lattice constant in } a_{B}$$

 $\mu_{\rm B}$

(5-4-4) MDDI: Antiferromagnetic 2D-square lattice

Perpendicular anisotropy $E_{MAE}^{dd} = -0.082 \text{ meV/Mn}$ $\mu = 4.2 \mu_B$ a = 2.83 ÅNote) $E_{MAE}^{dd} = -0.175 \text{ meV/Mn} (SDA)$ (5-5) Spin-orbit interaction

$$H_{\text{SOI}} = \frac{\hbar}{4m^2c^2} \vec{\sigma} \cdot \left(\frac{\text{grad } V(\vec{r}) \times \vec{p}}{\sigma} \right) \quad \vec{\sigma} \quad \text{Pauli's matrix}$$

$$V(\mathbf{r}) \approx -\frac{Ze^2}{r} \quad \text{grad } V(r) \approx \frac{dV}{dr} \frac{\mathbf{r}}{r} \quad \text{The effect is emphasized at surface/interface:} \text{ becoming not spherical.}$$

$$H_{\text{SOI}} = \xi \vec{\ell} \cdot \vec{\sigma} = \xi (\ell_x \sigma_x + \ell_y \sigma_y + \ell_z \sigma_z)$$

$$\xi(r) = \frac{\hbar^2}{4m^2c^2r} \frac{dV}{dr} \quad \frac{\text{connects orbital and spin spaces}}{r}$$
Biot-Savart law in the classical electromagnetics spin-orbit interaction}
$$E_{\text{SO}}^{i} = \lambda \vec{\ell} \cdot \vec{s} = \frac{\lambda}{2} \{j(j+1) - s(s+1) - \ell(\ell+1)\}$$

$$\text{The effect is emphasized at surface/interface:} \text{ becoming not spherical.}$$

$$\text{Due to the surface/interface the inversion symmetry breaks.}$$

$$\text{The effect is emphasized at surface/interface:} \text{ becoming not spherical.}$$

(5-5-2) Spin-texture in the reciprocal space: Rashba

effect 1

2 dimensional free electron with spin-orbit interaction

$$H = -\frac{\hbar^2}{2m} \nabla^2 + \vec{\sigma} \cdot \left(\vec{\alpha} \times \vec{p}\right) \qquad \vec{\alpha} \propto \left\langle \operatorname{grad} V(r) = \frac{1}{r} \frac{dV(r)}{dr} \mathbf{r} \right\rangle$$
Plane wave
$$\varphi_{\vec{k}} = \frac{1}{\sqrt{\Omega}} e^{i\vec{k}\cdot\vec{r}} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \qquad \propto \vec{e}_z$$

$$H = \frac{\hbar^2 k^2}{2m} + \vec{\sigma} \cdot \left(\vec{\alpha} \times \vec{k}\right) = \frac{\hbar^2 k^2}{2m} + \alpha_z \left(\vec{k} \times \vec{\sigma}\right)_z$$

$$= \frac{\hbar^2 k^2}{2m} + \alpha_z \left(k_x \sigma_y - k_y \sigma_x\right) \qquad \vec{k} = (k_x, k_y) \qquad k = \sqrt{k_x^2 + k_y^2}$$

$$E_+ = \frac{\hbar^2 k^2}{2m} + \alpha_z k \qquad \varphi_{\vec{k}}^+ = \frac{1}{\sqrt{\Omega}} e^{i\vec{k}\cdot\vec{r}} \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ -ie^{i\theta_k} \end{pmatrix} \propto \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i(\theta_k + \pi/2)/2} \\ e^{i(\theta_k + \pi/2)/2} \\ e^{i(\theta_k + \pi/2)/2} \end{pmatrix}$$

$$E_- = \frac{\hbar^2 k^2}{2m} - \alpha_z k \qquad \varphi_{\vec{k}}^- = \frac{1}{\sqrt{\Omega}} e^{i\vec{k}\cdot\vec{r}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -ie^{i\theta_k} \end{pmatrix} \propto \frac{1}{\sqrt{2}} \begin{pmatrix} -e^{-i(\theta_k + \pi/2)/2} \\ e^{i(\theta_k + \pi/2)/2} \\ e^{i(\theta_k + \pi/2)/2} \end{pmatrix}$$

(5-5-3) Spin-texture in the reciprocal space: Rashba effect 2

(5-5-5) Interpretation of Spin-orbit interaction

$$H_{\text{SOI}} = \frac{\hbar}{4m^{2}c^{2}} \vec{\sigma} \cdot \left\{ \left(\vec{\nabla} V(\vec{r}) \right) \times \vec{p} \right\}$$

$$H_{\text{SOI}} = 2\frac{\hbar e}{2mc} \frac{\vec{\sigma}}{2} \cdot \left\{ \frac{1}{2mce} \left(\vec{\nabla} V(\vec{r}) \right) \times \vec{p} \right\} = 2\mu_{\text{B}} \frac{\vec{\sigma}}{2} \cdot \left\{ \frac{1}{2mce} \left(\vec{\nabla} V(\vec{r}) \right) \times \vec{p} \right\}$$
Bohr magneton
Effective magnetic field
$$H_{\text{SOI}} = \frac{\hbar}{4m^{2}c^{2}} \left\{ \vec{\sigma} \times \vec{\nabla} V(\vec{r}) \right\} \cdot \vec{p} = \frac{\hbar}{m} \frac{1}{4mc^{2}} \left\{ \vec{\sigma} \times \vec{\nabla} V(\vec{r}) \right\} \cdot \vec{p}$$

$$H_{\text{SOI}} = -e \frac{\hbar}{4m^{2}c^{2}} \left(\vec{\sigma} \times \vec{p} \right) \cdot \frac{1}{e} \vec{\nabla} V(\vec{r})$$
Effective wave number
$$H_{\text{SOI}} = -e \frac{\hbar}{4m^{2}c^{2}} \left(\vec{\sigma} \times \vec{p} \right) \cdot \frac{1}{e} \vec{\nabla} V(\vec{r})$$

(5-5-6) Electric field effects in electronic structures of the surface/interface

> Stark effect $H_{\rm ED} = -e\vec{r} \cdot \vec{E}_{\rm ext}$

Electric dipole

Orbital coupling between the states of different angular p quantum number $\Delta \ell = \pm 1$.

Rashba (SOI) effect
$$H_{\rm SOI} = -e \frac{\hbar}{4m^2 c^2} (\vec{\sigma} \times \vec{p}) \cdot \vec{E}_{\rm ext}$$

Modification of the Rashba effect.

Electron depletion (accumulation)
 When imposing the EF, for PDOS ~ 1 states/eV
 Induced change in the number of electrons ~0.01 ~0.01 eV
 Induced change in the number of electrons ~0.1 ~0.1 eV
 by lattice constant, or modification surface/interface, etc.

(5-6) Spin transfer torque

Spin current Spin torque provided produced in fixed layer to free layer $N_{\rm stt} = \frac{dM_{\rm free}}{dt} \propto -I_{\rm s}\vec{M}_{\rm free} \times \left(\vec{M}_{\rm free} \times \vec{M}_{\rm fix}\right)$ Fixed layer Non-mag. Free layer \overline{M}_{free} M_{fix} Conservation law of Spin polarized current (spin) angular momenta

J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).

(5-7) Magnetic anisotropy energy: electron orbital, magnet shape in-plane contribution Magnetostatic contribution $E_{d-d} = \frac{1}{c^2} \sum_{\vec{R}_i = \vec{R}_i}^{i \neq j} \left\{ \frac{\vec{m}(\vec{R}_i) \cdot \vec{m}(\vec{R}_j)}{R_{ii}^3} - 3 \frac{\left[\vec{m}(\vec{R}_i) \cdot (\vec{R}_i - \vec{R}_j)\right] \left[\vec{m}(\vec{R}_j) \cdot (\vec{R}_i - \vec{R}_j)\right]}{R_{ii}^5} \right\}$ 2D square lat. Shape aniso. This depends on the arrangement of magnetic atoms, not so depend on electric field. Electronic structure contribution $H_{\rm SOI} = \xi \,\vec{\ell} \cdot \vec{\sigma}$ perturbation of spin-orbit interaction, MA appears from an anisotropy of orbitals \mathcal{U}_{ZX} γZ xyIt is important to see the behavior of each angular orbitals. Anisotropic occupation of electrons leads to MA.

21

MAE from <u>d-d interaction</u> for Fe-multilayers

(5-8) Magnetic anisotropy: in-plane, perpendicular

Trade-off property in magnetic memory

One of necessary condition

becomes small, loosing memory

= small thermo-stability

V Becomes large, increasing the barrier for magnetization reverse

= large threshold of magnetization reverse

Trade-off

Magnetic anisotropy energy of magnetic memory

Magnetic anisotropy energy per volume

Volume of magnet

Expectation: ultra-low energy consumption, non-volatile property, compactness(high density memory), enough high speed in reading&writing

T. Maruyama et. al., Nature Nanotech. 4, 158 (2009)

A1-5. Applying the electric field (EF) on iron chain

M. Tsujikawa and TO, J. Phys.: Condens. Matter, 21, 064213 (2009)

³¹

A1-6. Imposing the electric field (EF) on iron chain (part 2)

MAE and EF effects(comparison with exp.)

These signs of slopes and the ratio are in good qualitative agreement with the available experimental data.

The electric field is screened in a few number of surface layers.
In these layers, EF effects are induced.

S. Haraguchi et. al., J. Phys. D: Appl. Phys. 44 (2011) 064005.

Effective Screening Medium(ESM method): Otani et al., PRB 73,115407 (2006).

Interface: magnetic metal and dielectric insulator (Exp.) magnetic anisotropy change by electric polarization switching

M. Belmoubarik et al., Appl. Phys. Lett. 109, 054423 (2016).
Interface: magnetic metal and dielectric insulator (DFT)

(5-10) Landau–Lifshitz–Gilbert equation (LLG-equation)

$$\frac{d\vec{M}}{dt} = -\gamma \left(\vec{M} \times \vec{H}_{eff} \right) + \frac{\alpha}{M_s} \vec{M} \times \frac{d\vec{M}}{dt} - \eta (\theta) \frac{\mu_B I}{eV} \frac{\vec{M}}{M_s} \times \left(\frac{\vec{M}}{M_s} \times \frac{\vec{M}_{fix}}{M_{fix}} \right)$$
precessional term dumping term spin transfer torque
$$\vec{M} \quad : \text{Magnetization vector at free layer} \quad \boldsymbol{\alpha} \quad : \text{Gilbert magnetic damping factor}$$

$$\gamma \quad : \text{gyromagnetic factor} \quad \vec{M}_{fix} \quad : \text{Magnetization vector at fixed layer}$$

$$\eta(\theta) \quad : \text{spin transfer efficiency}$$

 $\vec{H}_{\rm eff} = \vec{H} + \vec{H}_{\rm shape} + \vec{H}_{\rm cry-aniso}$

J. C. Slonczewski. Journal of Magnetism and Magnetic Materials 159(1996)L1-L7

Dynamics of the magnetization on the free layer

M. Bauer et al., Phy. Rev. B**61**, 3410-3416(2000) D.C. Ralph, M.D. Stiles, J. Magn. Magn. Materials 320, 1190 (2008)

Shreshold current (derived from LLG equation)

$$I_{c} = \frac{2e}{\hbar} \frac{\alpha}{\eta(0)} V \mu_{0} M_{s} \left(H + H_{k} + \frac{M_{s}}{2} \right) \propto \frac{\alpha}{\eta(0)} M_{s}$$

- V Free layer volume
- α about 0.01

$$\eta(\theta) = \frac{q}{A + B\cos\theta} \quad \text{Anisotropy function}$$

 θ : the angle between the directions of spin current and fixed magnetization $_{M_{\rm s}}$

Proto-type of the magnetic device for a voltage driven MRAM Magnetization switching using voltage pulse

Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinio and Y. Suzuki. Nat. Mat. 11. 39(2012)

(5-11) Design on magnetic anisotropy in magnetic materials

> Parameters for controlling MAE and its EF effect MAE MAE E $\gamma \approx \gamma_{\rm v} \mathcal{E}_{\rm r}$ $\Delta \boldsymbol{\varepsilon}$ slope 0 $\gamma_{\rm v} \hat{\mathcal{E}_{\rm r}}$ 0 $\Delta \varepsilon$ (electric field) $\Delta \varepsilon$ (electric field) vacuum $\Delta \mathcal{E}$ dielectric $\Delta \varepsilon$ constant Insulator thickness Ferromagnet \mathcal{E}_{r} Ferromagnet vicinity Substrate metal effect Substrate metal 42 Elements for controlling the MAE and EF variation in thin magnetic layers

Magnetic materials and interfaces.

Mn3Ga

 $(\mathrm{Fe}_n/\mathrm{Ni}_m)_\ell$

Mn3Ge

L1-0 MnGa: K. Z. Suzuki et al., Scientific Reports, 6, 30249 (2016).

A Number of magnetic layers, layer-stacking alignment, etc.

Ref.) K. Hotta et al., Phys. Rev. Lett., **110**, 267206 (2013).

Insulating materials: larger dielectric constant : \mathcal{E}_{r}

insulator/Fe

 $\varepsilon_{\rm r}({\rm MgO}) = 9.8 \approx 10$

Magnetic interaction with neighboring layers.

Exchange bias between ferro- and antiferr-magnets.

Threshold to magnetic anisotropy transition

Films	$E_{\rm b}$ (mJ/m ²)	$E_{ m s}$ (mJ/m ²)	$E_{\rm b}$ + $E_{\rm s}$ (mJ/m ²)	MAE slope γ (fJ/Vm)	spin rotation EF (V/nm)				
MgO/Fe/Pd(001)	0.36	-0.34	0.02	130	-0.2				
MgO/Fe/Pt(001)	-1.18	-0.32	-1.50	615	2.4				
MgO/Fe/Au(001)	0.96	-0.25	0.71	18	-40.2				
MgO/Fe(2ML)/Au(001)	2.11	-0.57	1.54	-114	13.5				
MgO/Pd/Fe/Au(001)	-0.68	-0.28	-0.96	-388	-2.5				
MgO/Pt/Fe/Au(001)	1.52	-0.28	1.24	846	-1.5				
MgO/Au/Fe/Au(001)	2.06	-0.26	1.80	-196	9.2				
MgO/Pt/Fe(3ML)/Au(001)	0.69	-1.17	-0.48	633	0.8				
MAE $(\varepsilon) \approx E_{\rm b} + E_{\rm s} + \gamma \Delta \varepsilon$									
M. Tsujikawa et al., JAP, 111, 083910 (2012). $\mathcal{E}_{\rm c} = -\left(E_{\rm b} + E_{\rm s}\right)/\gamma$									

Summary

- (5-1) Electronics structure: DOS
- (5-2) Magnetic moment: spin, orbital, localized and itinerant, spin-texture
- (5-3) Zeeman energy
- (5-4) Distance and interaction between magnetic carriers, magnetic and crystal structures
- (5-5) Spin-orbit interaction, electric field effcts
- (5-6) Spin transfer Torque
- (5-7) Magnetic anisotropy energy: electron orbital, magnet shape
- (5-8) Magnetic anisotropy: in-plane, perpendicular
- (5-9) Voltage-induced spin torque
- (5-10) Landau–Lifshitz–Gilbert equation
- (5-11) Design on magnetic anisotropy in magnetic materials

(Appendix 1) Imposing the electric field perpendicular to surface/interface

Total energy representation by the Green's function

$$E[n_{e}] = K[n_{e}] + E_{xc}[n_{e}] + \frac{1}{2} \iint d\vec{r} d\vec{r}' n_{e}(\vec{r}) G(\vec{r}, \vec{r}') n_{e}(\vec{r}') + \iint d\vec{r} d\vec{r}' n_{e}(\vec{r}) G(\vec{r}, \vec{r}') n_{I}(\vec{r}') + \frac{1}{2} \iint n_{I}(\vec{r}) G(\vec{r}, \vec{r}') n_{I}(\vec{r}')$$

A1-2.

Usual first-principles approach Electrostatic potential (solution of Poisson's equation);

$$V_H(\vec{r}) = \int G(\vec{r}, \vec{r}') n(\vec{r}') d\vec{r}$$
$$G(\vec{r}, \vec{r}') = \frac{1}{|\vec{r} - \vec{r}'|}$$

In practical, the above is calculated with the Fourier transformation

$$V_H(\vec{r}) = \sum_{\vec{g}(\neq 0)} \frac{4\pi}{\vec{g}^2} n(\vec{G}) e^{i\vec{g}\cdot\vec{r}}$$

This procedure can not be applied for the system on which the electric field is imposed because of the breaking for the periodic boundary condition.

(Appendix 2) Single spin-state valley in the surface states of TI/Si(111) and TI/Si(110)

TI/Si(111)-1×1 surface

Sakamoto, Oda, Kimura et al., Phys.Rev. Lett., 102 (2009) 096805.

Full spin-orbit interaction other than the Rashba term

Sakamoto, Oda, Kimura et al., Phys.Rev. Lett., 102 (2009) 096805.

Sakamoto, Oda, Kimura et al., Phys.Rev. Lett., 102 (2009) 096805.

Wave vector dependence of spin direction : Voltical spin polarization

Wave vector dependence of electron spin direction : Tl site

Atomic orbital components in the eigenstates at $\,\,{ m K}$

K. Sakamoto et al., Nat. Commun., 4, 2073, doi: 10.1038/ncomms3073, (2013)

Spin-splitting of the surface Tl/Si(110)

Structure

Ек=35.96 eV

ARPES

E-*E*_F -0.04 eV

Band dispersion and Spin texture

Discussion on group theory, see the paper, Nagano, Kodama, Shishido, Oguchi, JPCM, 2009.

Single spin-state valley with in-pane spin direction in Tl/Si(110)

E. Annese et al., Phys. Rev. Lett., 117, 16803(2016)

(Appendix 3) Spin and orbital magnetic moments in an electronic structure calculation

Spin and orbital magnetic moments

spin magnetic moment

$$m_{spin,k}^{I} = -\mu_{B} \left\langle m_{k}(\vec{r}) \right\rangle_{I}$$

orbital magnetic moment

expansion with the local basis

$$m_{orb,k}^{I} = -\mu_{B} \langle \ell_{k} \rangle_{I} \qquad \qquad \Psi_{i\alpha}(\vec{r}) = \sum_{\ell m} Y_{\ell m}(\hat{r}_{I}) R_{\ell m,i\alpha}(r)$$

$$\langle \ell_{k} \rangle_{I} = \langle \ell_{k} \rangle_{I,PW} + \langle \ell_{k} \rangle_{I,VB}$$

$$\langle \ell_{k} \rangle_{I,PW} = \sum_{i} f_{i} \langle \Psi_{i} | \ell_{k} | \Psi_{i} \rangle_{I}$$

$$\langle \ell_{k} \rangle_{I,VB} = \sum_{ipq} f_{i} \langle \Psi_{i} | \beta_{q}^{I} \rangle \ \ell_{k,pq}^{I} \langle \beta_{p}^{I} | \Psi_{i} \rangle$$

$$\ell_{k,pq}^{I} = \int_{0}^{r_{c}} \phi_{p}(r_{I}) \phi_{q}(r_{I}) r_{I}^{2} dr_{I} \langle Y_{j_{q}\mu_{q}}^{\mathrm{sgn}(\kappa_{q})} | \ell_{k} | Y_{j_{p}\mu_{p}}^{\mathrm{sgn}(\kappa_{p})} \rangle$$

T. Oda and A. Hosokawa, Phys. Rev. B, 72, 224428 (2005)

Atomic magnetic moments in CoPt and FePt

$r_{\rm c}$ =2.5 a.u.		spin (µ _B)		orbital(μ_B)		
		USPP	AE	USPP	AE	
CoPt [001]	Co	1.926	1.91 1.803	0.102	0.11 0.089	
	Pt	0.377	0.38 0.394	0.061	0.07 0.056	
CoPt [110]	Co	1.929	1.809	0.069	0.057	
	Pt	0.377	0.398	0.078	0.073	
FePt [001]	Fe	3.016	2.93 2.891	0.067	0.08 0.067	
	Pt	0.338	0.33 0.353	0.046	0.05 0.042	
FePt [110]	Fe	3.020	2.893	0.062	0.061	
	Pt	0.340	0.355	0.059	0.055	

AE: Sakuma, JPSJ(1994), Ravindran et al., PRB(2001)

(Appendix 4) Approximation in Dirac equation

Dirac equation (part 2) (eq. in stationary-state) $p_0 = i\hbar \frac{\partial}{\partial(ct)} \longrightarrow p_0 = \frac{\varepsilon}{c}$

Coupled equations for the large and small components;

$$\left(\varepsilon - mc^{2} + eA_{0}\right)\varphi_{L} = c\left(\vec{\sigma}, \vec{p} + \frac{e}{c}\vec{A}\right)\varphi_{S}$$
$$\left(\varepsilon + mc^{2} + eA_{0}\right)\varphi_{S} = c\left(\vec{\sigma}, \vec{p} + \frac{e}{c}\vec{A}\right)\varphi_{L}$$

Eliminate the small component;

$$\left(\varepsilon - mc^{2} + eA_{0}\right)\varphi_{L} = c^{2}\left(\vec{\sigma}, \vec{p} + \frac{e}{c}\vec{A}\right)$$
$$\left(\varepsilon + mc^{2} + eA_{0}\right)^{-1}\left(\vec{\sigma}, \vec{p} + \frac{e}{c}\vec{A}\right)\varphi_{L}$$

Commute the parts with underline:

Dirac equation (part 3)

$$\left(\varepsilon - mc^{2} + eA_{0}\right)\varphi_{L} = c^{2}\left(\varepsilon + mc^{2} + eA_{0}\right)^{-1}\left(\vec{\sigma}, \vec{p} + \frac{e}{c}\vec{A}\right)^{2}$$
$$+ c^{2}\left(\varepsilon + mc^{2} + eA_{0}\right)^{-2}\left(\vec{\sigma}, (-e\vec{p}A_{0})\right)\left(\vec{\sigma}, \vec{p} + \frac{e}{c}\vec{A}\right)\varphi_{L}$$

For not heavy elements, the eigenvalue at valence electrons is larger than the rest energy by a small value. Therefore, we cant take a following approximation;

$$\varepsilon' = \varepsilon - mc^2$$
, $\frac{\varepsilon' + eV_0}{mc^2} <<< 1$
 $\approx 2mc^2$

Using this approximation, the equation for the large component;

Formula 1 (\vec{a}, \vec{b}) : Scalar product

Using following general properties;

$$\left(\vec{\sigma} , \vec{B} \right) \left(\vec{\sigma} , \vec{C} \right) = \left(\vec{B} , \vec{C} \right) + i \left(\vec{\sigma} , \vec{B} \times \vec{C} \right) \vec{H} = \vec{\nabla} \times \vec{A}$$

We obtain the following formula related with Zeeman' term;

$$\left(\vec{\sigma}, \vec{p} + \frac{e}{c}\vec{A}\right)^{2} = \left(\vec{p} + \frac{e}{c}\vec{A}\right)^{2} + \frac{\hbar e}{c}\left(\vec{\sigma}, \vec{H}\right)$$

$$\left(\vec{\sigma}, (-e\vec{p}A_{0})\right)\left(\vec{\sigma}, \vec{p} + \frac{e}{c}\vec{A}\right) = \left((-e\vec{p}A_{0}), \vec{p} + \frac{e}{c}\vec{A}\right) + i\left(\vec{\sigma}, (-e\vec{p}A_{0}) \times (\vec{p} + \frac{e}{c}\vec{A})\right)$$

$$= \left((-e\vec{p}A_{0}), \vec{p} + \frac{e}{c}\vec{A}\right) + \left(i\vec{\sigma} \times (-e\vec{p}A_{0}), \vec{p} + \frac{e}{c}\vec{A}\right)$$

$$c^{2}\left(\varepsilon + mc^{2} + eA_{0}\right)^{-1} = \frac{1}{2m}\left(1 + \frac{\varepsilon' + eA_{0}}{2mc^{2}}\right)^{-1} = \frac{1}{2m}\left(1 - \frac{\varepsilon' + eA_{0}}{2mc^{2}} + \dots\right)$$

$$c^{2}\left(\varepsilon + mc^{2} + eA_{0}\right)^{2} = \frac{1}{4m^{2}c^{2}}\left(1 + \frac{\sigma + eA_{0}}{2mc^{2}}\right) = \frac{1}{4m^{2}c^{2}}\left(1 - \frac{\sigma + eA_{0}}{mc^{2}} + \dots\right)$$

Formula 2

$$\begin{split} & \left(\varepsilon' + eA_{0}\right)\varphi_{L} = \\ & \left(1 - \frac{\varepsilon' + eA_{0}}{2mc^{2}} + \dots\right) \left\{ \frac{1}{2m} \left(\vec{p} + \frac{e}{c}\vec{A}\right)^{2} + \frac{\hbar e}{2mc} \left(\vec{\sigma}, \vec{H}\right) \right\} \varphi_{L} + \\ & \left(1 - \frac{\varepsilon' + eA_{0}}{mc^{2}} + \dots\right) \times \\ & \left\{ \frac{1}{4m^{2}c^{2}} \left((-e\vec{p}A_{0}), \vec{p} + \frac{e}{c}\vec{A} \right) + \frac{1}{4m^{2}c^{2}} \left(i\vec{\sigma} \times (-e\vec{p}A_{0}), \vec{p} + \frac{e}{c}\vec{A} \right) \right\} \varphi_{L} \end{split}$$

Taking the leading terms in the approximation; the approximation formula in (5-3).

(Appendix 5) Spin-orbit splitting in the heavy element
$$E_{SO}^{j} = \lambda \vec{\ell} \cdot \vec{s} = \frac{\lambda}{2} \left\{ j(j+1) - s(s+1) - \ell(\ell+1) \right\}$$

$$s, s_{z} = s, s-1, \dots, -s$$

$$\ell, m = \ell, \ell-1, \dots, -\ell \qquad j = \ell + s, \dots, |\ell-s|$$

$$s = \frac{1}{2}, s_{z} = \frac{1}{2}, -\frac{1}{2}$$

$$\ell = 1 \rightarrow j = \frac{3}{2}, \frac{1}{2} \qquad \ell = 2 \rightarrow j = \frac{5}{2}, \frac{3}{2}$$

$$\boxed{\lambda > 0}$$

$$p_{x}, p_{y}, p_{z} \otimes s_{\uparrow}, s_{\downarrow}$$

$$\int_{j=\frac{1}{2}}^{j=\frac{3}{2}} d^{5} \otimes s_{\uparrow}, s_{\downarrow}$$

$$\int_{j=\frac{1}{2}}^{j=\frac{5}{2}} d^{5} \otimes s_{\uparrow}, s_{\downarrow}$$

$$\int_{j=\frac{1}{2}}^{j=\frac{5}{2}} d^{5} \otimes s_{\uparrow}, s_{\downarrow}$$

Eigenvalues of Pb atom

(in Ry energy unit)

Ref. State: (Kr Core)(5d)¹⁰(6s)²(6p)²

nl	j	all electron	pseudo (ΔE)	[]
5 <i>d</i>	3/2	-1.6734	-1.6733 (+0.0001)	$\begin{vmatrix} \Delta E_{\rm so}(d) \\ 0.1912 \end{vmatrix}$
5 <i>d</i>	5/2	-1.4823	-1.4821 (+0.0002)	2.601 eV
6 <i>s</i>	1/2	-0.9016	-0.9014 (+0.0002)	
6 <i>p</i>	1/2	-0.3547	-0.3545 (+0.0002)	$\Delta E_{\rm so}(p)$
6 <i>p</i>	3/2	-0.2440	-0.2439 (+0.0001)	0.1106 1.505 eV

These values are in good agreement with the previous data. _{Ph}

$$\Delta E_{\rm SO}^{\ell} = E_{\rm SO}^{\ell+1/2} - E_{\rm SO}^{\ell-1/2} = \frac{\lambda}{2} (2\ell+1) \quad \lambda = \frac{2}{2\ell+1} \Delta E_{\rm SO}^{\ell} \quad \lambda_{\ell=2}^{\rm Pb} = 1.04 \,\mathrm{eV}$$

$$\lambda_{\ell=1}^{\rm Pb} = 1.00 \,\mathrm{eV}$$

74

Band dispersion of fcc Pb

(Appendix 6) Kohn-Sham equation, variational principles, Car-Parrinello molecular dynamics, fully relativistic pseudo potential Density functional theory: Kohn&Sham eqution Variational principles

$$\widetilde{E}[n(\mathbf{r})] = E[n(\mathbf{r})] - \mu \left(\int n(\mathbf{r}) d\mathbf{r} - N_{e} \right)$$

 $\frac{\delta \widetilde{E}}{\delta n(\mathbf{r})} = 0$

Kohn&Sham equation Electron density $\left\{-\frac{1}{2}\nabla^{2} + V_{\text{eff}}(\mathbf{r})\right\}\Psi_{i}(\mathbf{r}) = \varepsilon_{i}\Psi_{i}(\mathbf{r}) \qquad n(\mathbf{r}) = \sum_{i}^{\text{occ.}} |\Psi_{i}(\mathbf{r})|^{2}$

Electron potential $V_{\text{eff}}(\mathbf{r}) = V_{\text{ext}}(\mathbf{r}) + \frac{1}{2} \int \frac{n(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} d\mathbf{r'} + \frac{\delta E_{\text{xc}}}{\delta n(\mathbf{r})}$ [79] Car-Parrinello Molecular Dynamics for Noncollinear Magnetism

- Bispinor Wave Functions for Single Electron States
- $\Phi_k(r) = \begin{pmatrix} \phi_{k1}(r) \\ \phi_{k2}(r) \end{pmatrix}$ Soft part **Augmented part** (hard part) • Density Matrix $\rho_{\alpha\beta}(r) = \sum_{k} f_{k} \{ \phi_{k\alpha}(r) \ \phi_{k\beta}^{*}(r) + \sum_{Inm} Q_{nm}^{I}(r) \langle \beta_{n}^{I} | \phi_{k\alpha} \rangle \langle \phi_{k\beta} | \beta_{m}^{I} \rangle \}$ $=\frac{1}{2}(n(r)\sigma_0+m_x(r)\sigma_x+m_y(r)\sigma_y+m_z(r)\sigma_z)_{\alpha\beta}$ unit matrix $\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Charge density n(r)Spin density vector $m_{\alpha}(r)$ Pauli matrix $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $n(r) = \rho_{11} + \rho_{22}$ $m_x(r) = 2 \operatorname{Re} \rho_{12}$ $m_v(r) = -2 \operatorname{Im} \rho_{12}$ $m_z(r) = \rho_{11} - \rho_{22}$

80

• Total Energy(Energy Functional)

$$E_{tot}[\{\Phi_k\}, \{R_I\}] = \sum_{k} f_k \langle \Phi_k | (-\frac{1}{2} \nabla^2 \sigma_0 + V_{NL}) | \Phi_k \rangle + \frac{1}{2} \iint \frac{n(r)n(r')}{|r-r'|} dr dr' \\ + \int V_{loc}^{ion}(r) n(r) dr + E_{XC}[n(r), m(r)] + U_{ion}[\{R_I\}] \\ V_{loc}^{ion}(r) = \sum_{I} V_{loc}^{I}(r-R) \qquad V_{NL} = \left(\sum_{Inm} |\beta_m^I\rangle D_{nm}^{(0)I} \langle \beta_n^I|\right) \sigma_0 \\ U_{ion}[\{R_I\}] = \frac{1}{2} \sum_{IJ} \frac{Z_I Z_J}{|R_I - R_J|} \qquad m(r) = |\vec{m}(r)|$$

$$\beta_n^I(r) \quad D_{nm}^{(0)I} \quad Q_{nm}^I(r) \quad V_{loc}^I(r)$$

These quantities are transferred from an atomic reference configuration. The pseudo potential is the ultra-soft type.

 Density Functional for the Exchange-Correlation Term. Local spin density approximation(LDA), Generalized gradient approximation(GGA,PW91) Van der Waals density functional (vdW-DF) • Lagrangian (Car-Parrinello Molecular Dynamics)

$$L = m_{\Phi} \sum_{k} f_{k} \langle \dot{\Phi}_{k} | \dot{\Phi}_{k} \rangle + \frac{1}{2} \sum_{I} M_{I} \dot{R}_{I}^{2} - E_{tot} [\{\Phi_{k}\}, \{R_{I}\}] + \sum_{k\ell} \Lambda_{k\ell} (\langle \Phi_{k} | S | \Phi_{\ell} \rangle - \delta_{k\ell})$$

• Molecular Dynamics (Euler-Lagrange equation)

$$\begin{split} m_{\Phi}\ddot{\Phi}_{k}(r) &= -H \Phi_{k}(r) + \sum_{\ell} \frac{1}{f_{k}} \Lambda_{k\ell} S \Phi_{\ell}(r) \\ M_{I}\ddot{R}_{I} &= F_{I} + \sum_{k\ell} \Lambda_{k\ell} \langle \Phi_{k} \mid \frac{\partial S}{\partial R_{I}} \mid \Phi_{\ell} \rangle \\ H &= \frac{1}{f_{k}} \frac{\delta E_{tot}}{\delta \Phi_{k}} \qquad \qquad \left(\frac{\bar{\phi}_{k1}(r)}{\bar{\phi}_{k2}(r)} \right) = - \begin{pmatrix} H11 & H12 \\ H21 & H22 \end{pmatrix} \begin{pmatrix} \phi_{k1}(r) \\ \phi_{k2}(r) \end{pmatrix} \\ F_{I} &= -\frac{\partial E_{tot}}{\partial R_{I}} \\ R. \text{ Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).} \end{split}$$

Install to the plane wave method (I)

spinor wave function

$$\Phi_k(r) = \begin{pmatrix} \phi_{k1}(r) \\ \phi_{k2}(r) \end{pmatrix}$$

density matrix

$$\rho_{\alpha\beta}(r) = \sum_{k} f_{k} \{ \phi_{k\alpha}(r) \phi_{k\beta}^{*}(r) + \sum_{Ipq} Q_{pq,\alpha\beta}^{I}(r) \langle \beta_{p}^{I} | \Phi_{k} \rangle \langle \Phi_{k} | \beta_{q}^{I} \rangle \}$$

spinor type projector function

$$\begin{split} \beta_{p}^{I}(r) &= b_{j\kappa\tau}^{I}(r) \mathbf{Y}_{j\mu}^{\mathrm{sgn}(\kappa)}(r_{I}) \quad p = \{j\mu\kappa\tau\} \\ j &= \ell + \frac{1}{2}, \mu = m + \frac{1}{2} \quad \mathbf{Y}_{j,\mu}^{(-)} = \left(\frac{l+m+1}{2l+1}\right)^{1/2} \mathbf{Y}_{l,m} \begin{pmatrix} 1\\0 \end{pmatrix} + \left(\frac{l-m}{2l+1}\right)^{\frac{1}{2}} \mathbf{Y}_{l,m+1} \begin{pmatrix} 0\\1 \end{pmatrix} \\ j &= \ell - \frac{1}{2}, \mu = m - \frac{1}{2} \quad \mathbf{Y}_{j,\mu}^{(+)} = \left(\frac{l-m+1}{2l+1}\right)^{1/2} \mathbf{Y}_{l,m-1} \begin{pmatrix} 1\\0 \end{pmatrix} - \left(\frac{l+m}{2l+1}\right)^{\frac{1}{2}} \mathbf{Y}_{l,m} \begin{pmatrix} 0\\1 \end{pmatrix} \\ \kappa &= \ell > 0 \end{split}$$

TO and A. Hosokawa, PRB, **72**, 224428 (2005)

Install to the plane wave method (II)

nonlocal potential

$$V_{NL} = \sum_{Ipq} |\beta_q^I\rangle D_{pq}^{(0)I} \langle \beta_p^I|$$

transfer from the atomic generation code

$$\beta_p^I(r) = D_{pq}^{(0)I} \quad Q_{pq,\alpha\beta}^I(r) \quad V_{loc}^I(r)$$

Kohn-Sham equation

$$\begin{split} H \ \Phi_k(r) &= \mathcal{E}_k \ S \ \Phi_k(r) \\ H &= \left(-\frac{1}{2} \nabla^2 \right) \sigma_0 + \overline{V}_{eff} + \sum_{lpq} |\beta_p^I\rangle D_{pq}^I \langle \beta_q^I | \qquad S = 1 + \sum_{lpq} |\beta_q^I\rangle q_{pq}^I \langle \beta_p^I | \\ \overline{V}_{eff}(r) &= \left(V_{loc}^{ion}(r) + \int \frac{n(r')}{|r-r'|} dr' + V_{xc}^N(r) \right) \sigma_0 + V_{xc}^M(r) \frac{1}{m(r)} \vec{m}(r) \cdot \vec{\sigma} \\ D_{pq}^I &= D_{pq}^{(0)I} + \sum_{\alpha\beta} \int Q_{pq,\alpha\beta}^I(r) \left(V_{eff}(r) \right)_{\alpha\beta} dr \quad V_{xc}^N(r) = \frac{\delta E_{xc}}{\delta n(r)} \quad V_{xc}^M(r) = \frac{\delta E_{xc}}{\delta m(r)} \end{split}$$

84

TO and A. Hosokawa, PRB, 72, 224428 (2005)

(Appendix 7) Magnetic dipole-dipole interaction, Shape magnetic anisotropy energy

Shape Magnetic Anisotropy Energy (SMAE)

From magnetic dipole interaction(MDI)
SMAE =
$$E_{MDI}^{[001]} - E_{MDI}^{[100]}$$

Continuum approach (CA)
MAE = $E_{MDI}^{[001]} - E_{MDI}^{[100]} = \frac{1}{2} \mu_0 \frac{M^2}{\Omega}$
MAE = $E_{MDI}^{[001]} - E_{MDI}^{[100]} = \frac{1}{2} \mu_0 \frac{M^2}{\Omega}$
Discrete approach (DA) [1,2]
 $\mathbf{m}(\mathbf{R}_i)$: Atomic magnetic moment
 $E_{MDI}^{\mathbf{m}} = \frac{e^2}{4m^2c^2} \sum_{\mathbf{R}_i, \mathbf{R}_j}^{i\neq j} \left[\frac{\mathbf{m}(\mathbf{R}_i) \cdot \mathbf{m}(\mathbf{R}_j)}{R_{ij}^3} - 3 \frac{\mathbf{m}(\mathbf{R}_i) \cdot (\mathbf{R}_i - \mathbf{R}_j)\mathbf{m}(\mathbf{R}_i) \cdot (\mathbf{R}_i - \mathbf{R}_j)}{R_{ij}^5} \right]$
Spin density approach (SDA) [3]
 $E_{MDI}^{\mathbf{m}} = \frac{e^2}{4m^2c^2} \iint d\mathbf{r}_1 d\mathbf{r}_2 \left[\frac{\mathbf{m}(\mathbf{r}_1) \cdot \mathbf{m}(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|^3} - 3 \frac{\mathbf{m}(\mathbf{r}_1) \cdot (\mathbf{r}_1 - \mathbf{r}_2)\mathbf{m}(\mathbf{r}_2) \cdot (\mathbf{r}_1 - \mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|^5} \right]$

High precision shape magnetic anisotropy from spin density distribution: magnetic interface/surface

 $|{\bf r}_1 - {\bf r}_2|^5$

[1] H. J. G. Draaisma and W. J. M. de Jonge, J. Appl. Phys. 64, 1988. [2] L. Szunyogh et al, Phys. Rev. B 51, 9552, 1995. [3] T. Oda and M. Obata, J. Phys. Soc. Jpn. 87, 064803, 2018.

TO, I. Pardede, et al., IEEE Trans. Magn. 55, 1300104 (2018).