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AIST Tsukuba Central, National Institute of Advanced Industrial Science
and Technology

● Researchers (foreign nationals)……2,284(116)
　［ Permanent ］ [ 1,925 ]
　［ Fixed term ］ [ 359 ]
● Administrative employees (foreign nationals)
 ………686(1)

Total number of employees : 2,970(117)
● Executives (full time) …………………………13
● Visiting researchers ………………………185
● Postdoctoral researchers  …………………190
● Technical staff  ……………………………1,487

(As of July 1, 2016)

Number of researchers accepted through 
industry/academia/government partnerships
● Companies …………………………………1,856
●Universities ………………………………1,924
● Other organizations ………………………936
 (foreign nationals :  456)
 (Total number of researchers accepted in FY 2015)

Employees and Budget

14 ％ 18 ％

14 ％
13 ％

18 ％

13 ％
10 ％

Department of Energy and Environment

Department of Life Science 
and Biotechnology

Department of Materials and Chemistry

Department of Electronics 
and Manufacturing

Department of Information Technology 
and Human Factors

Geological Survey of Japan

National Metrology Institute of Japan

Composition of researchers by domain (As of July 1, 2016)

Financial results for FY 2015 (unit : million yen)

Subsidy
63,767

Facility 
maintenance 
grants
4,634

Facility 
management 

costs
4,633

Other
management
costs

Department of Energy 
and Environment

Department of 
Life Science and 
Biotechnology

Department of 
Information Technology 
and Human Factors

Department of 
Materials and Chemistry

Department of Electronics 
and Manufacturing

Geological Survey 
of Japan

National Metrology 
Institute of Japan

8,337

Revenue
98,938

Expenditure
92,020

Commissioned 
research funds
19,721

(from private 
companies 
747)

17,024

7,595

6,956

9,758

9,321

13,545

6,673

8,180

Indirect 
costs

Miscellaneous 
6,186

Joint research 
revenue
4,210

Intellectual 
property revenue

317

Technical 
consulting revenue

102

Notes 1: Total may not become 100 % due to rounding off.
Notes 2: The amounts of revenue and expenditure are adapted from the “Financial Statement” 
prescribed in Article 38 of the Act on General Rules for Incorporated Administrative Agencies. 
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Major research topics

My interests: 
• Electric-double layer 

• Reaction on surface and interfaces.

Tool: Density-functional-theory based (MD) simulation. 
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FPMD of electrochemical Interfaces

We need “NEW” tools

3

1–3
Distances bet. the electrode, bet. the nearest

electrode atoms and the molecular ones

4–49 Distances

50–53 Distances

54–55 Angles

56–60 Energies

60–72 Charge amounts of molecular atoms

73–144 Charge amounts of electrode atoms

145–180 Molecular orbits

TABLE I. Explanatory variables: The first 55 variables are structural variables and the ones for > 55 are derived by quantum
mechanical computations from the structural variables.

FIG. 2. Multiple plots of {yµ(E)}µ against E for different clusters. The upper leftmost plot is the one for all µ = 1, · · · ,M0

and they are separately plotted in the other panels according to the clustering result. The 7th cluster’s one, the lower rightmost
panel, shows rather large deviations in the different curves.

the minimum of eq. (6) with respect to λ as λ̂(k)(E),
we finally adopt β̂(k)(E) ≡ β̂(k)(E, λ̂(k)(E)) as the best
representation for a given cluster of structures k and an
energy E. Below, we show the properties of β̂(k)(E) when
changing the clusters and the energy E.

III. RESULT

A. Approximation accuracy, fit quality, and related

Let us start from checking the validity of our proce-
dures and approximation. For this, in this subsection we
show the fitting and some related quantities.
Figure 3 shows the plots of CV errors against the den-

sity of the non-zero component, ρ = K/N , at E = 0 ob-
tained by our approximation and by the standard 10-fold
CV. Due to the applicable limit of the approximation, the
two curves deviate if ρ ≈ α, but this region is irrelevant
because the minimums of the CVEs, which determine
the optimal values of ρ (λ), appear when ρ is sufficiently

smaller than α. We plot the locations of the minimums
by vertical lines in Fig. 3 and actually the curves coin-
cide well around them, as well as the those minimums.
We have checked this is the case for some other values
of E. These observations validate the use of the approx-
imation (6). Note that the approximation formula has a
slight instability and the corresponding CVE has some
local minima; the smallest value of ρ among those local
minima is chosen in Fig. 3, which is reasonable in a sense
of statistical inference.

The minimum of the CVE gives the optimal value of ρ.
We plot this in Fig. 4 against the energy E. This shows
that the values of ρ is reasonably smaller than α for all
E and clusters, and thus reasonably sparse representa-
tions are obtained, though the values largely deviate as
E varies. This implies that the sparse representations
frequently change in different regions of E, which will be
reconsidered later.

Figure 5 is the plot of the reconstructed values of the
spectra, {Xµ∗β̂(k)(E)}µ∈Sk , against the observed ones,
{yµ(E)}µ∈Sk , for the clusters k = 1, · · · , 6. These figures

Now we “can”  obtain hundreds 
thousands spectra from simulation

Efficient Analysis is necessary.

Spectra-data sets including 600 samples



 6

Milestone project with Informatics

Materials Genome Initiative（MGI from 2011）

7Materials Genome Initiative for Global Competitiveness

Materials Deployment
The Challenge 

To achieve faster materials development, the materials 
community must embrace open innovation. Rapid 
advances in computational modeling and data 
exchange and more advanced algorithms for modeling 
materials behavior must be developed to supplement 
physical experiments; and a data exchange system 
that will allow researchers to index, search, and 
compare data must be implemented to allow greater 
integration and collaboration.

Later parts of the continuum are necessarily linear 
(i.e. certification cannot occur before systems design), 
but all stages would benefit from increased data 
transparency and communication. Currently, no 
infrastructure exists to allow 
different engineering teams 
to share data or models. 
Data transparency may 
have the largest impact 
after the material has been 
deployed, due to the fact 
that every industry relies on 
materials as components of 
product design. A product 
designer who needs a 
material of certain 
specifications may not be 
aware that the material has 
already been designed 
because there is no 
standard method to search for it. Data transparency 
encourages cross-industry and multidisciplinary 
applications.

The life cycle of a material does not end with 
deployment. An issue that is coming more to the 
attention of industry and consumers is the recyclability 
and sustainability of materials. Materials engineers 
must design for the ever-changing parameters and 
uses of materials after their initial intended purpose; 
for example, recyclability must become a design 
parameter.

The Materials Genome Initiative will develop the 
toolsets necessary for a new research paradigm in 
which powerful computational analysis will decrease 

the reliance on physical experimentation. Improved 
data sharing systems and more integrated engineering 
teams will allow design, systems engineering, and 
manufacturing activities to overlap and interact  
(see Figure 2).

This new integrated design continuum — incorporating 
greater use of computing and information technologies 
coupled with advances in characterization and 
experiment — will significantly accelerate the time and 
number of materials deployed by replacing lengthy 
and costly empirical studies with mathematical models 
and computational simulations. Now is the ideal time 
to enact this initiative; the computing capacity 

necessary to achieve these 
advances exists and related 
technologies such as 
nanotechnology and bio-
technology have matured to 
enable us to make great 
progress in reducing time 
to market at a very low cost.

Multiple international entities 
have recognized these 
issues and a number of 
foreign countries have 
already embarked on 
programs to address them.6 
The National Research 

Council of the National Academies of Sciences, in its 
report on Integrated Computational Materials 
Engineering, describes the potential outcome:

 Integrating materials computational tools and 
information with sophisticated computational and 
analytical tools already in use in engineering 
fields… [promises] to shorten the materials 
development cycle from its current 10-20 years to 
2 or 3 years.7

While it is difficult to anticipate the actual reduction 
in development time that will result from this initiative, 
our goal is to achieve a time reduction of greater 
than 50 percent.

Time

Future Materials
Continuum

Materials Continuum
Today

Number of 
New Materials
to Market

Figure 2: Initiative acceleration of the materials continuum

1. Developing a Materials Innovation Infrastructure

2. Acheiving National Goals With Advanced Materials

3.Equipping the Next-Generation Materials Workforce

Main purpose

Using Database and machine-learning



Our research in MI
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1. Clustering and correlation analysis of transmission spectrum of molecular junction system


2. A new descriptor of perovskites for performance estimation of fuel cells


3. Materials Search for a well-worked 2D substrate for Germanene and Stanene


4. Unsupervised clustering of PDOS in Surface system


5. Development of machine-learning potentials for Amorphous research 

6. Yield prediction in experiments from Simulation (Catalyst informatics)


7. High-throughput peak fitting on many XPS spectra 

8. Model selection of equivalent circuits on impedance spectroscopy


9. Model selection of preferred orientation distribution of tourmaline-grains


10.Parameter optimization of equation of states for an inner earth environment
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So, what is informatics?
What is machine-learning?



Linear Regression (PCA)

Y =
X

i

aiXi + b
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What they do is just 
“Putting points and 

Drawing lines”

Functions of ML
✓  Prediction
✓  Characterization
✓  Classification
✓  Pattern Recognition Support Vector Machine（SVM）

Short introduction
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Representing Complex Situation

Fitting process by Neural network

✓  Basis expansion (polynomial, spline etc.)
✓  Kernel Regression, Gaussian Process 
✓  Neural Network

Applicable to high-dimensional data

NOT work lines ?
JUST draw the “curve”
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Exploration and Exploitation 

Bayesian Optimization 

✓  Based on the observation, predicting values and its “credibility” at unobserved points 
✓  Automatically searching observable space considering predicted value and credibility.
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Material Search with Bayesian Opt.

Thermoelectric material Interface matching
Jpn. J. Appl. Phys. 55 (2016) 2–6.  
Science Adv., 2, e1600746-1-7.

(3) Based on the joint probability distribution, the possible
GB energies are estimated at all points in the search
space.

(4) Z-scores, calculated by the following equation, are
estimated at all points in the search space. Z ! scorei ¼
ðGB Energycurrent min ! GB EnergyðxiÞÞ=

ffiffiffiffiffiffiffiffiffiffi
!ðxiÞ

p
, where

GB Energycurrent min is the minimum GB energy at this
moment and GB Energy(xi) and σ (xi) are the mean
and standard deviation at the point xi in the search
space.

(5) The point that has the maximum Z-score is selected as
the next search point because that point is likely to have
the least GB energy at the moment.

(6) It is confirmed whether the acquired GB energies meet
the convergence conditions, such as energy difference
between the ith calculation and the i + 1th calculation.

(7) This cycle of operations, (2) through (6), is repeated
until the convergence criteria have been satisfied.

In the structure optimization and energy calculation
for (2), we have performed a static lattice calculation using
an empirical potential method with the general utility lattice
program (GULP) code.24) The embedded atom potential
method reported by Cleri et al. was employed.25)

3. Results and discussion

A GB of copper Σ5[001]=(210) was chosen as the test case
and the stable structure was investigated. Using the conven-
tional approach, all configurations were calculated and the
most stable point was determined from the search space
shown in Fig. 1(b). The obtained stable structure is shown
in Fig. 2(a), and the calculated GB energy was 0.96 J=m2.
As can be seen from the figure, the GB is composed of an
array with a six-membered structure unit; this structure agrees
with the previously reported structures.18,20) However, 17,983
complete calculations were necessary to reach this stable
structure by the conventional method.

To accelerate the search for the stable structure, the kriging
approach was applied. From the results of 20 randomly
selected configurations, the search space was interpolated
based on the Gaussian process. By using the kriging method,
the data to be calculated is dramatically decreased, as shown
in Fig. 3(a). In this case, the most stable point was deter-
mined after only 69 trials (including initial 20 trials) as shown
in Fig. 3(b). The most stable structure obtained is shown in
Fig. 2(b); the GB is composed of a six-membered structure
unit that is very similar to the stable structure obtained by the
comprehensive data searching. Furthermore, the calculated
GB energy is 0.96 J=m2, which is identical to that by the
conventional method, indicating that our present method can
accurately find for the most stable structure.

Here, the efficiency of the kriging method is discussed
in contrast to the conventional method. The convergence
processes are displayed in Figs. 4(a) and 4(b). Although the
conventional method requires the calculation of all 17,983
configurations, the present kriging method requires only 69

Fig. 1. (Color online) (a) Search space. Each grid point corresponds to the
possible rigid body translations. (b) GB energies in the search space
determined by comprehensive calculations.

Fig. 2. (Color online) Stable atomistic arrangements of Σ5[001]=(210)
with (a) the conventional method and (b) the kriging method. Dashed line
represents the position of the GB. Polyhedron shows the six-membered
structure unit.

Jpn. J. Appl. Phys. 55, 045502 (2016) S. Kiyohara et al.

045502-2 © 2016 The Japan Society of Applied Physics

calculations. Since its efficiency depends on the first random
selection of data points, we repeated the kriging operation by
74 times for the same GB. The results of all trials are shown
as histograms in Figs. 5(a) and 5(b). The 42 kriging opera-
tions were completed by fewer than 50 time calculation,
whereas more than 200 time calculations were required in
the 4 kriging operations. The number of required operation
becomes large when the structures at a limited area in the
whole data space was selected by the random structure
selection. Such non-uniform selection in the data space leads
to the small variance of the descriptors. As the result, the
average number of the calculations for searching the stable
structures is 70. Furthermore, as shown in Fig. 5(b), irre-
spective of the number of the calculation, most of the kriging
operations succeeded in finding the most stable grain bound-
ary energy, namely 0.96 J=m2. Although 4 kriging operations
converged to 0.97 J=m2, their structures are almost same as
the structure of 0.96 J=m2. The kriging operation accidentally
converged to such structures close to the most stable one
because the curvature near the minimum point of the energy
aspects is gentle in the present case.

Finally, to confirm the applicability of the kriging method,
a different GB was examined. The !3½110"=ð"111Þ GB of bcc-
Fe was selected as a model because its stable structure has also

been reported previously.26) The kriging method was applied
to search for the most stable configuration, just as in the case
of the Σ5[001]=(210) copper GB described above. The result
was that we succeeded in determining the stable structure after
105 calculations. The calculated structure is shown in Fig. 6
(purple circles). The stable structure determined by the kriging
approach agrees well with that of the previous study26) [Fig. 6
(orange circles)]. Since 17,466 configurations are present for
this !3½110"=ð"111Þ GB bcc-Fe grain boundary, the kriging
method again achieves two orders of magnitude higher effi-
ciency than the conventional method. This clearly indicates
that our kriging method is a very powerful technique to
determine the stable interface structure.

As mentioned above, more than ten thousand calculations
are necessary by the conventional approach, and several
hundred calculations are required even the recently developed
genetic algorithm approaches.15–17) We demonstrated here
that the kriging method needs around a hundred time
calculations. Namely, the kriging method is approximately 2
orders of magnitude higher in efficiency than the conventional
method and several times more efficient than the genetic
algorithm approaches. Furthermore, we want to emphasize
that the only rigid body translations were used as the descrip-
tors for a Gaussian process in the present method. Thus, our

Fig. 3. (Color online) (a) Selected data points during the kriging search.
The number corresponds to the trial number for the kriging. The red number
indicates that the initial calculations. (b) Magnified image around (x = 5.0,
y = 1.2, z = 1.8) in (a). The number “69” (indicated by pink arrow) denotes
the converged structure, i.e., the stable structure.

Fig. 4. (Color online) (a) Trajectory of the calculated GB energy to the
convergence. The “conventional method” means the computation of all
configurations. To understand the calculation efficiency easily, the calculated
result by the conventional method (black) was plotted by order of the GB
energy, whereas it was plotted by order of the trial number in the kriging
method (red). (b) Magnified image around the area pointed by blue arrow in
the (a).

Jpn. J. Appl. Phys. 55, 045502 (2016) S. Kiyohara et al.

045502-3 © 2016 The Japan Society of Applied Physics

PRL 115, 205901 (2015).

its variance are described using the Gaussian kernel func-
tion. Therefore, our GPR has two free parameters, i.e.,
variances of theGaussian kernel and prior distribution.Here,
they are given as 20 and 0.1, respectively.
Figure 2(a) shows the result of the kriging search in

comparison to the random search of the lowest LTC
compounds within the 101 compounds. The average num-
bers of compounds required for the optimization using the
kriging and random searches, Nav, are 11 and 55, respec-
tively. The compound with the lowest LTC among the 101
compounds, i.e., rocksalt PbSe, can be found much more
efficiently using the kriging technique and only with two
variables, V and ρ. However, we realize that using kriging
only with these two variables is not a robust way for finding
the lowest LTC. As an example, Fig. 2(b) shows the result of
the kriging search using the dataset after intentionally
removing the first and second lowest LTC compounds,
i.e., rocksalt PbSe and PbTe, from the 101 compounds.
Then, rocksalt LiI should be the right answer of the
optimization. However, Nav is 65 for finding LiI using
kriging only with V and ρ, which is larger than that of the
random search, Nav ¼ 50. The delay of the optimization
should originate from the fact that LiI is an outlier whenLTC
is modeled only with V and ρ. Such outlier compounds with
low LTC are difficult to find only with V and ρ.
In order to overcome the outlier problem, we add

predictors about constituent chemical elements. There
are many choices for such variables: They are, for example,
electronegativity, atomic radius, ionization energy, etc.
[27]. Here, we newly introduced “elemental descriptors,”
a set of binary digits representing the presence of chemical
elements. Since the 101 LTC data is composed of 34 kinds
of elements, we use 34 elemental descriptors. Results of the
kriging are shown in Figs. 2(a) and 2(b) with 34 elemental
descriptors on top of V and ρ. In both cases, the compound
of the lowest LTC is found with Nav ¼ 19. The use of the

elemental descriptors is found to improve the robustness of
the efficient search.
As described in the Supplemental Material (SM) [33],

better correlationswithLTCcan be found for parameters that
are obtained from the phonon density of states. However,
we do not use such phonon parameters as predictors in the
present study because there is no data library available for
such phonon parameters for a wide range of compounds.
Hereafter, we show results only with the predictor set
composed of 34 elemental descriptors on top of V and ρ.
Screening for low LTC compounds over compounds in a

large library is carried out using a GPR prediction model.
Such a screening based on a prediction model is called a
“virtual screening” in biomedical communities [34]. For
the virtual screening, we adopt all 54 779 compounds in the
MPD library [30,35], which is composed mostly of crystal
structure data available in ICSD [28]. This means that most
of them have been synthesized experimentally at least once.
On the basis of the GPR prediction model made by V, ρ and
34 elemental descriptors for the 101 LTC data, a ranking for
low-LTC compounds is made according to the Z score of
the 54 779 compounds.
Figure 3 shows the distribution of Z scores for the 54 779

compounds along with V and ρ. The magnitude of the Z
score is plotted in panels corresponding to constituent
elements. (Transition metal and other elements are shown
in the SM [33]). The Z score is relative to rocksalt PbSe,
showing the lowest LTC among the 101 compounds.
Among the 54 779 compounds, 221 compounds, which
are expected to have lower LTC than that of rocksalt PbSe,
i.e., < 0.9 W=mK (at 300 K), show a positive Z score.
They are highlighted by red dots. They are widely distrib-
uted in V-ρ space; which means it is difficult to pick them
up without performing the Bayesian optimization with
elemental descriptors. The Z score is widely distributed for
light elements such as Li, N, O, and F. This implies that the
presence of such light elements by itself has little effect on
lowering the LTC. When such light elements form a
compound with heavy elements, the compound tends to
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FIG. 2 (color online). Lowest LTC values at each iteration in the
kriging search for finding (a) PbSe and (b) LiI. Those random
searches are also shown for comparison. When performing a
kriging search for finding LiI, PbSe and PbTe are intentionally
omitted and the rest of the 99 compounds are used.
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FIG. 3 (color online). Dependence of the Z score on constituent
elements for compounds in the MPD library. The magnitude of
the Z score is shown by colors along with volume, V, and density,
ρ, for each element.
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show a high Z score. It is also noteworthy that many
compounds composed of some light elements, such as Be
and B, tend to show high LTC.
Special features are recognized for Pb, Cs, I, Br, and Cl.

Many compounds composed of these elements exhibit high
Z scores. (The number of compounds with positive Z
scores is shown in the SM [33]). Most compounds showing
a positive Z score have any of the atomic combinations of
these five elements. On the other hand, elements in the
Periodic table neighboring these five elements do not show
analogous trends. For example, compounds with high Z
scores are rarely found for Tl and Bi, which are neighboring
to Pb. This may sound odd since Bi2Te3 is a famous
thermoelectric compound, and it is known that some
compounds containing Tl have low LTC. This may be
ascribed to our selection of the training dataset composed
only of AB compounds with 34 elements and three kinds of
simple crystal structures. In other words, the training
dataset is somehow “biased.” This is unavoidable at the
moment since the first-principles LTC calculations are still
too expensive to obtain a sufficiently unbiased training
dataset with a large enough number of data to cover the
diversity of chemical composition and crystal structures.
Nevertheless, the biased training dataset will be verified to
be useful for finding low-LTC materials. Because of the use
of the biased training dataset, we may not be able to
discover all of the low-LTC materials in the library.
However, we can discover at least a part of them.
A ranking of LTC made from the Z score does not

necessarily correspond to the true first-principles ranking.
Therefore, the verification process for the candidates of the
low-LTC compounds after the virtual screening is one of
the most important steps in “discovering” low-LTC com-
pounds. First principles LTCs are evaluated for the top eight
compounds after the virtual screening. All of them are
considered to form ordered structures. LTC calculation was
unsuccessful for Pb2RbBr5 due to the presence of imagi-
nary phonon modes within the supercell used in the present
study. Z scores and first-principles LTC of the rest of the
compounds are listed in Table I. All of the top five
compounds show a LTC of < 0.2 W=mK (at 300 K),
which is much lower than that of the rocksalt PbSe, i.e.,
0.9 W=mK (at 300 K). This confirms the powerfulness of
the present GPR prediction model for efficiently discov-
ering low-LTC compounds. Crystal structures of highly
ranked compounds, PbRbI3, PbIBr, PbRb4Br6, and PbI2
(P63mc) are shown in the SM [33]. PbICl and PbClBr have
the same crystal structures as PbIBr. PbI2 (R 3̄m) and PbI2
(P63mc) are different only in their stacking sequences. All
of these compounds contain either sixfold or eightfold
coordinated Pb by halogen ions, and are of stoichiometric
chemical composition when Pb is divalent.
When such LTC materials are considered for thermo-

electric applications, properties related to electronic struc-
tures, namely the electronic contribution of thermal

conductivity, electrical conductivity, and the Seebeck
coefficient, should also be optimized. Although they can
be tuned by elemental doping, the band gap,Eg, should be a
simple measure of the electronic structure and allows us to
discriminate in a simple way between materials that can be
good thermoelectrics or not. All of the 221 compounds
showing a positive Z score are listed in the SM [33]
together with Eg (DFT-PBE) given in the MPD library.
Among them, only 19 compounds satisfy 0.1 <
Eg < 1.0 eV. First-principles LTCs are evaluated for them.
Crystal structures and LTC for two of them are shown in
Fig. 4 and Table I. Both K2CdPb and Cs2½PdCl4"I2 are
predicted to exhibit LTC of less than 0.5 W=mK (at 300 K)
together with a band gap of smaller than 1 eV. The
discovery of such compounds may open a gate toward
designing new thermoelectric materials with an exception-
ally high figure of merit.
In this Letter, we first report the theoretical LTC of 101

compounds by first-principles anharmonic lattice-dynamics
calculations. Using these data, the virtual screening of a
library containing 54 779 compounds is performed by
Bayesian optimization using the kriging method based
on the Gaussian process regressions. 221 materials with
very low LTC are found from this screening. A final
filtering of those low-LTC compounds is made using the

Cs

I

Cl

Pd
K

Cd Pb

(b)(a)

Cs2 [PdCl4 ]I2K2 CdPb

FIG. 4 (color online). Crystal structures of K2CdPb and
Cs2½PdCl4"I2 predicted to show the low LTC of < 0.5 W=mK
(at 300 K) and narrow band gap of < 1 eV.

TABLE I. First principles LTCs and Z scores for highly ranked
compounds by the virtual screening. Band gaps by DFT-PBE are
taken from MPD library [30,35]. The other electronic properties
are shown in the SM [33].

Ranking
Z

score Formula
Space
group

LTC
(W=mK)

Band
gap (eV)

1 1.90 PbRbI3 Pnma 0.10 2.46
2 1.76 PbIBr Pnma 0.13 2.56
3 1.56 PbRb4Br6 R 3̄c 0.08 3.90
4 1.56 PbICl Pnma 0.18 2.72
5 1.56 PbClBr Pnma 0.09 3.44
7 1.44 PbI2 R 3̄m 0.29 2.42
8 1.43 PbI2 P63mc 0.29 2.45
121 0.39 K2CdPb Ama2 0.45 0.18
144 0.29 Cs2½PdCl4"I2 I4=mmm 0.31 0.88
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industrial sector consumes approximately one third of all
energy, roughly 32 ! 1015 (quadrillion) Btu per year. Of this
amount, between 5 and 13 quadrillion Btu per year are lost
as waste heat via streams of hot exhaust liquids and gases, as
well as through heat conduction, convection, and radiation
from manufacturing equipment and processes.46 Indeed,
“…the United States is the Saudi Arabia of waste heat.”47

Recent studies have shown that for the United States alone,
annual potential for electrical energy recovery from waste
heat could be in the multi-terawatt range.48 Although ther-
moelectric devices have significant potential to recover
waste heat from industrial processes, commercially available
devices are only about 5% efficient. Therefore, discovery of
higher efficiency thermoelectric materials using HTE is criti-
cal to enabling the practical recovery of waste heat.
Materials that exhibit a large Seebeck coefficient, high

electrical conductivity, and low thermal conductivity are
considered candidates for use in thermoelectric applica-
tions;49,50 optimizing these transport properties improves the
energy conversion efficiency. The efficiency and perfor-
mance of thermoelectric power generation are proportional
to the dimensionless figure of merit, ZT, of the material.
ZT¼ S2rT/k, where T is the absolute temperature, S is the
Seebeck coefficient, r is the electrical conductivity, and k is
the thermal conductivity. High-throughput instruments capa-
ble of locally and rapidly measuring Seebeck coefficients at
room51,52 and elevated temperatures53 have been con-
structed. Further, high-throughput measurements of thermal
effusivity, from which thermal conductivity can be derived,
have also been carried out, using either time domain54 or fre-
quency domain thermoreflectance.55 Thus, ZT can be
obtained through HTE techniques; however, the power fac-
tor, equal to S2r, is also a suitable figure of merit and can be
obtained more readily because it does not require measuring
thermal conductivity. Figure 2, illustrating research per-
formed on the Ca3Co4O9 system,56 shows the compositions
on the library film that exhibit the highest power factors.
HTE approaches have been applied in the search for new
thermoelectric materials by diffusion annealing of bulk materi-
als,57 unidirectional solidification,58 and the use of composi-
tionally graded thin films.51,53,55,59 Thus far, only a limited
number of pseudo-binary and -ternary thermoelectric systems
have been investigated using HTE: (Zn,Al)O,51 Ca3Co4O9,

56

Co-Ce-Sn,55 PbTe–Ag2Te–Sb2Te3,58 MgxSiyGe1-y,59

CoSb3–LaFe4Sb12–CeFe4Sb12 and Sb2Te3–Bi2Te3.53

Energy storage: Battery materials

Energy storage materials such as in Li ion batteries rep-
resent another opportunity for the HTE approach. The expo-
nential growth of computer processing power, combined
with the laws of physics expressed through quantum
mechanics, has made it possible to design new materials
from first principle physics using supercomputers. In the
mid-2000s, the development of high-throughput computa-
tional methods and software infrastructure was pioneered
and applied to the discovery of novel energy storage materi-
als.60,61 Importantly, HTE synthesis and measurement

FIG. 1. (a) Schematic of a combinatorial heater for achieving continuous
temperature gradients orthogonal to composition gradients. A small piece of
metal is inserted between the heater plate and the glass substrate and (b)
combinatorial photovoltaic device library with mutually orthogonal gra-
dients in thickness and composition of the absorber. Each solar cell on the
library has an individual front contact and a common back contact.

FIG. 2. (a) Electrical conductivity, (b) Seebeck coefficient, and (c) power factor of the composition-spread (Ca1#x#ySrxLay)3Co4O9 film (0< x< 1/3 and
0< y< 1/3). Reproduced with permission from Appl. Phys. Lett. 91, 3 (2007). Copyright 2007 AIP Publishing LLC.56

011105-5 Green et al. Appl. Phys. Rev. 4, 011105 (2017)

High-Throughput Experimental (HTE) methodologies

Materials “Library” :  Dispersing the several compositions on a single sheet

Observing Big Materials Space at once, Finding optimum one

Appl. Phys. Lett. 91, 132102 (2007).



 14pixels is 360 ! 180, namely, M ¼ 64800. There is a QPI
pattern on the surface. The FT of this dI=dV map obtained by
the conventional method is shown in Fig. 1(b). The q-space
region of interest is discretized into 128 ! 128 pixels,
namely, N ¼ 16384. In this case, the amount of data is
sufficient compared with the number of unknown variables
(M > N). Then, we can see two rings centered at the origin in
the q space as reported by Sessi et al.30) The outer ring
corresponds to the conventional surface electronic states and
the inner one is due to the acoustic surface plasmon. The
region occupied by the two rings is small in the q space, and
thus the sparseness assumption holds in this case.

Let us examine whether the double circle can be recovered
from a reduced amount of data. Figure 2 shows FTs of N ¼
16384, which are estimated from partial data ofM ¼ 7200. It
is stressed that the number of unknown variables is larger
than that of the measured variables. The top and middle rows
show the results of the conventional method and those of
LASSO, respectively. LASSO is carried out on the basis
of approximate message passing.27,28) The regularization
parameter λ of LASSO is set so as to minimize the CVE
calculated by 10-fold CV. The analysis with LASSO
outperforms that by the conventional method in reducing
background noise, and the expected pattern is more clearly
seen. In the ill-posed situation, LASSO provides a sparse
solution; most of the noise components are automatically
estimated to be zero and the signal components remain
nonzero.

Figures 2(a) and 2(d) show the case of randomly chosen
data points. In this case, LASSO succeeds in recovering the
double-circle pattern, whereas the conventional method fails.
Figures 2(b) and 2(e) show the case of every third data point
in both the horizontal and vertical directions. In both of these
figures, we find phantom patterns around the true pattern.

These patterns are attributed to the aliasing effect that makes
some different wavenumber components indistinguishable
owing to the periodicity of sampling. Figures 2(c) and 2(f )
show the case of data points in a small central region
of Fig. 1(a). As shown in the figures, the QPI pattern is
considerably deteriorated. The inner ring disappears because
long-wavelength components can hardly be detected in the
small region. In addition, the intensity of the outer ring is
very weak because the region is too distant from defects to
form the QPI pattern. On the basis of the above results, we
conclude that CS performs well with random sampling in a
broad region.

To quantitatively evaluate the effects of LASSO, we
examine line sections of the FTs. Figures 2(g) and 2(h) show
the radially averaged line sections of Figs. 2(a) and 2(d),
respectively. Each of the fitting curves is obtained by the
least-squares method, where, in the same way as Sessi
et al.,30) the following model function is employed:

fðqÞ ¼
X

k¼1;2
ak exp % 1

2!2k
ðq % "kÞ2

! "
þ c; ð7Þ

where f"1; "2; !1; !2; a1; a2; cg is a set of model parameters.
Assume without loss of generality that "1 < "2. Note that the
peak of the outer ring has a delta-function-like shape when
the phase noise that arises from the random distribution of
scatterers is removed. The results show that LASSO provides
a much higher signal-to-noise ratio (ak=c) and determines the
peak locations with less uncertainty (!k). Overall, the synergy
between measurement and analysis, namely, random sam-
pling and LASSO, is indispensable for compressed sensing.

Next, we discuss the performance of LASSO when it is
applied to different amounts of data. The top row of Fig. 3
shows the FTs estimated from randomly reduced amounts of
data. In the cases of (a)–(c), the ring pattern is clearly seen as
is expected, but in the last case of (d), we see that the ring
pattern breaks at many places. The data set of M ¼ 4050
is considered to be insufficient in quantity. This situation
indicates that LASSO fails in the case of too scarce data.
However, it is difficult to judge whether the result in
Fig. 3(d) is reliable when we do not know the true pattern in
practice. We argue that the CVE is a good criterion for
evaluating the sufficiency of data. Figure 3(e) shows the CVE
of the conventional method, LASSO, and a naive method by
which one blindly accepts the sparseness assumption and
estimates that f̂ ¼ 0 without any concern about data fitting.
In the case of M ¼ 64800, LASSO gives a much smaller
CVE than the conventional method. The large CVE of the
conventional method is attributed to overfitting to noise
components in the data. Although the naive method has a
lower CVE than the conventional method, the naive method
is still inferior to LASSO because it corresponds to applying
LASSO with an infinitely large λ. Here, let us focus on the
fact that the difference in the CVE between the naive method
and LASSO becomes smaller as the amount of data
decreases. To investigate the significance of the performance
difference, we use an orthodox method of hypothesis testing
called the t-test. When the t-test is used in natural science, the
significance level is often set to # ¼ 0:01. According to the t-
test at # ¼ 0:01, a significant difference in the CVE remains
when M ' 7200 but not when M ¼ 4050. This means,
conversely, that the dataset of M ¼ 4050 is insufficient

(a)

In
te

ns
ity

 [a
rb

. u
ni

t]

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

qx [nm−1]

q y
[n

m
−1

]

(b)

−9 −6 −3 0 3 6 9
−9

−6

−3

0

3

6

9

In
te

ns
ity

 [a
rb

. u
ni

t]

0

5

10

15

Fig. 1. (a) dI=dV map of Ag(111) surface. (b) FT of (a) obtained by
conventional method.
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Downsampling method for quasi-particle Ohs.
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Fig. 2. (a)–(f ) FTs estimated from different parts of Fig. 1(a). Subsets of data are composed of 7200 pixels. Results of the conventional method and LASSO
are shown in the top and middle rows, respectively. (a) and (d) are obtained by using randomly chosen pixels. (b) and (e) are obtained by using every third
pixel in both the horizontal and vertical directions. (c) and (f ) are obtained by using only the central region in the r space. (g) and (h) are radially averaged line
sections corresponding to (a) and (d), respectively. Each of the fitting curves is composed of two Gaussian functions and a background constant.
(g) !1 ¼ 1:3 nm−1, !2 ¼ 3:2 nm−1, "1 ¼ 0:91 nm−1, "2 ¼ 0:18 nm−1, a1=c ¼ 0:92, a2=c ¼ 0:96. (h) !1 ¼ 1:2 nm−1, !2 ¼ 3:2 nm−1, "1 ¼ 0:84 nm−1, "2 ¼
0:15 nm−1, a1=c ¼ 14, a2=c ¼ 18.
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Fig. 3. (a)–(d) FTs estimated from randomly reduced data with LASSO. The number of pixels is M ¼ 64800, 16200, 7200, and 4050 from the left.
(e) Cross-validation error of conventional method, naive method, and LASSO. The length of the error bars shows the standard deviation among 10 trials of 10-
fold CV. (f )–(h) Parameters of curve fitting to radially averaged line sections. (f ) Wavenumber of peak positions: (f1) !1 and (f2) !2. The length of the error
bars is the FWHM of the Gaussian functions shown in (g): (g1) 2

ffiffiffiffiffiffiffiffiffiffiffi
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p
"1 and (g2) 2
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2 ln 2

p
"2. (h) Signal-to-noise ratio (SNR): (h1) a1=c and (h2) a2=c.
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Structure Optimization

Sampling for Free energy

Normal modes and transition states

LiTi2O4 samples range from 3.5 to 4.0 in point-contact
spectroscopy33,34 and Andreev reflection36. A recent report using
epitaxial LiTi2O4 thin films claims 2D/kBTc¼ 4.07 from point-
contact spectroscopy22, and thus the obtained value of 3.0 is much
smaller than that of all the previous reports. Furthermore, the
present value is even smaller than that for the weak coupling limit
for s-wave BCS superconductivity of 3.52. We discuss later the
possible origins of this unexpectedly small 2D/kBTc.

Coherence length on the surface. To further study the super-
conductivity on the surface, we investigated the value of x from
the electronic structures around a magnetic vortex core. We first
analysed the Vs dependent conductance (dI/dV) map around a

single vortex core by applying an external magnetic field of 1.5 T
perpendicular to the surface at 4.2 K (Fig. 4a–e). At Vs¼ " 8 mV
and þ 8 mV, we observed uniform conductance over the scanned
region (Fig. 4a,e), whereas conductance values were depressed
around the centre of images at Vs¼ " 4 mV and þ 4 mV
(Fig. 4b,d). This depressed conductance is a consequence of
suppressed coherence peaks. In contrast, the conductance map at
Vs¼ 0 mV clearly represents enhanced conductance in the centre
region (Fig. 4c). This enhanced zero-bias conductance around the
centre region is because of pair breaking. These energy evolutions
of conductance map indicate signatures of a vortex core (Fig. 4a–e),
and the evolution of tunnelling spectra along line A–B in Fig. 4a
clearly shows a typical spatial evolution of spectral shape across a
vortex core (Fig. 4f).
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Figure 1 | Surface topographies and superconducting critical temperatures. (a,b) STM topographic images of as-deposited thin film at substrate
temperature of 600 !C (a) and 400 !C (b). (c,d) STM images after post-deposition annealing (PDA) for films deposited at 400 !C (c) and 300 !C (d).
Note that b,c are taken with using the same film. a–c are obtained at 77 K and d is obtained at 4.2 K (all the STM images were observed at a sample-bias
voltage of þ 300 mV and a tunnelling current is about 10 pA). Scale bar, 80 nm (a–d). (e) Growth temperature dependence of root mean square of surface
roughness (RRMS) values: as-grown samples (blue symbols) and after PDA (red symbols). The value of RRMS is evaluated from topographic images
observed at a sample-bias voltage of þ 300 mV and a tunnelling current of 10 pA (scan area of 400 nm). (f) Temperature dependence of the field-cooled
dc magnetic susceptibility for the LiTi2O4 films in a magnetic field of 50 Oe, which was applied parallel to the (111) plane. Clear diamagnetism is observed.
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Figure 2 | Typical topographic images on a terrace. (a) Filled-state STM image of LiTi2O4(111) surface (11.6 nm$ 11.6 nm, sample-bias voltage Vs of
" 900 mV, tunnelling current Iset of 30 pA). (b) Empty-state STM image (4 nm$4 nm, Vs¼ þ 30 mV, Iset¼ 30 pA). (c) Zoomed-up image
(1.7 nm$ 1.7 nm, Vs¼ þ 30 mV, Iset¼ 30 pA) of b. The image shows three-fold symmetry representing the spinel crystal structure. Scale bars, 2 nm (a),
0.8 nm (b) and 0.3 nm (c).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15975 ARTICLE

NATURE COMMUNICATIONS | 8:15975 | DOI: 10.1038/ncomms15975 | www.nature.com/naturecommunications 3

Determining the 
LTO surface structure 

(Nat. Commun. 8, 15975 (2017))

障壁計算 NEB
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vinyl alcohol to acetaldehyde (NEB method)

DMol3   TS search (LST/QST)  51.473 cal/mol, -10.851 cal/mol (PBE)

52.14 kcal/mol

Phys. Chem. Chem. Phys., 2018, 20, 11586-11591

• From stable structure to dynamical behaviors

• Must tools for research in nano sciences
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TTAM (Tsuneyuki-Tsukada-Aoki-Matsuda) Potential

Phys. Rev. Lett. 61, 86 (1988).
Nature 339, 209 (1989).

 Parametrizing potentials by fitting on Hartree-Fock calculations of SiO44- + 4 point charge model

!18
Discovery of new SiO2 high-pressure phase

VOLUME 61, NUMBER 7 PHYSICAL REVIEW LETTERS 15 AUGUST 1988

a =0.118, 0.424) ' for silicon and (9s5p)/[3s2p] with p
functions (with a =0.059) ' for negative-ion states of
oxygen. We assume no electron orbitals around the
point charges.
The potential energy surface is then obtained by our

changing the Si-0 distances or 0-Si-0 angles with three

t

difl'erent modes. One potential energy surface is depict-

U/(r) =U;/c'""~ b(r)+f o(b;+b J)exp[( a+a J r)/(—b;+bi

ed in Fig. 1, in which we stretch all the Si-0 bonds keep-
ing the Td symmetry of the cluster. We have also ob-
tained the results for the C3„,mode, in which only one
Si-0 distance is changed, and the D2d mode, in which
0-Si-0 angles are varied with constant Si-0 distance.
It has turned out that these three potential energy sur-

faces can be fitted well by a sum of pairwise interatomic
potentials. We have employed the function form,

)]—c;cj/r', (1)
which consists of Coulomb interaction with some corrections discussed below, Born-Mayer-type repulsion, and disper-
sive interaction. Here r is the distance between atoms and a; (b;) is the effective radius (softness parameter) of the ith
atom with the standard force fo 1 kcal A mol . We also include Coulomb interactions with the point charges.
A caution must be made in the evaluation of the Coulomb interaction in the cluster, because the effective charge in

the bulk, Q;, is different from that in a Si04 cluster, Q;: In terms of the fractional charge, An, transferred from a Si
atom to an 0 atom per Si—0 bond, we have Qp= —2/)ne and Qs;=4/)ne, while we have Qo= —(I+An)e and
Qs; =4/)ne We. express the Coulomb interaction in the cluster as a sum of long-range and short-range parts as

Uij~'"" '=Q;Q, [1—g~)(r)]/r+Q;Q)gii(r)/r,
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The correction, g&(r), in the long-range part (the first
term) involving Q reflects the distribution of the excess
charge of oxygen, for which we assume a hydrogenlike
orbital with a radius I/( here. The radius is of the order
of the ionic radius of 0, so that we employ I/(=1.4 A
following Pauling. ' Since the remaining short-range
part is expected to be insensitive to the environment, we
use the bulk Q; there. Once the parameters a;, b;, and c;
are optimized from the cluster calculation, we switch Q
back into Q (i.e., UPi"" =Q;Qi/r) in the bulk simula-
tion. Thus the final pair potentials have the same func-
tional form as suggested by Gilbert and Ida. '
From the cluster calculation, the charge obtained by

the Mulliken analysis, which is Qp- —1.7e (i.e.,

I
hn 0 7)-for. the equilibrium bond length, is shown to be
a function of the Si-0 distance (Fig. 1). The feature
that the atomic charge varies with the bond length clear-
ly indicates a many-body character of interatomic forces
in the covalent system. The physical mechanism will be
discussed in more detail elsewhere. To concentrate on
the pair-potential approach, however, we have used con-
stant Q; (Q;). Since small-cluster results are insufficient
to determine the long-range Coulomb interaction, and
because the absolute value of the Mulliken charge itself
depends on the choice of basis function, we have not in-
cluded An in the fitting procedure. Instead we tried
several fixed values of An around the Mulliken charge.
Among the trial values studied here, the fitted parame-
ters with An 0.6 reproduce the best crystal parameters.
Since the fitting procedure for a;, b;, and c; is nonlinear,
more than one set of parameters are obtained. We have
chosen the one (Table I) which optimizes the structure
and compressibility of a-quartz' in a static simulation
by the program wMtN. '

Now we turn to the MD study. We have performed
the dynamical stability test for four polymorphs of silica
mentioned above. !t has been experimentally shown that
these polymorphs, which correspond to different pres-
sure-temperature regimes, can also exist at normal pres-
sure and temperature as metastable states. In the
present simulation, the number of atoms in the system is
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FIG. 1. Total energy and the Mulliken charge on an oxygen
atom for Td deformation of a Si04 -4e+ cluster shown in the
inset. The solid circles are the cluster calculation, full curve is
the fitted potential, and the broken curve is a guide to the eye.
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a =0.118, 0.424) ' for silicon and (9s5p)/[3s2p] with p
functions (with a =0.059) ' for negative-ion states of
oxygen. We assume no electron orbitals around the
point charges.
The potential energy surface is then obtained by our

changing the Si-0 distances or 0-Si-0 angles with three

t

difl'erent modes. One potential energy surface is depict-

U/(r) =U;/c'""~ b(r)+f o(b;+b J)exp[( a+a J r)/(—b;+bi

ed in Fig. 1, in which we stretch all the Si-0 bonds keep-
ing the Td symmetry of the cluster. We have also ob-
tained the results for the C3„,mode, in which only one
Si-0 distance is changed, and the D2d mode, in which
0-Si-0 angles are varied with constant Si-0 distance.
It has turned out that these three potential energy sur-

faces can be fitted well by a sum of pairwise interatomic
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The correction, g&(r), in the long-range part (the first
term) involving Q reflects the distribution of the excess
charge of oxygen, for which we assume a hydrogenlike
orbital with a radius I/( here. The radius is of the order
of the ionic radius of 0, so that we employ I/(=1.4 A
following Pauling. ' Since the remaining short-range
part is expected to be insensitive to the environment, we
use the bulk Q; there. Once the parameters a;, b;, and c;
are optimized from the cluster calculation, we switch Q
back into Q (i.e., UPi"" =Q;Qi/r) in the bulk simula-
tion. Thus the final pair potentials have the same func-
tional form as suggested by Gilbert and Ida. '
From the cluster calculation, the charge obtained by

the Mulliken analysis, which is Qp- —1.7e (i.e.,

I
hn 0 7)-for. the equilibrium bond length, is shown to be
a function of the Si-0 distance (Fig. 1). The feature
that the atomic charge varies with the bond length clear-
ly indicates a many-body character of interatomic forces
in the covalent system. The physical mechanism will be
discussed in more detail elsewhere. To concentrate on
the pair-potential approach, however, we have used con-
stant Q; (Q;). Since small-cluster results are insufficient
to determine the long-range Coulomb interaction, and
because the absolute value of the Mulliken charge itself
depends on the choice of basis function, we have not in-
cluded An in the fitting procedure. Instead we tried
several fixed values of An around the Mulliken charge.
Among the trial values studied here, the fitted parame-
ters with An 0.6 reproduce the best crystal parameters.
Since the fitting procedure for a;, b;, and c; is nonlinear,
more than one set of parameters are obtained. We have
chosen the one (Table I) which optimizes the structure
and compressibility of a-quartz' in a static simulation
by the program wMtN. '

Now we turn to the MD study. We have performed
the dynamical stability test for four polymorphs of silica
mentioned above. !t has been experimentally shown that
these polymorphs, which correspond to different pres-
sure-temperature regimes, can also exist at normal pres-
sure and temperature as metastable states. In the
present simulation, the number of atoms in the system is
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FIG. 1. Total energy and the Mulliken charge on an oxygen
atom for Td deformation of a Si04 -4e+ cluster shown in the
inset. The solid circles are the cluster calculation, full curve is
the fitted potential, and the broken curve is a guide to the eye.
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• Dividing the electrostatic interaction to long-
range, short-range parts. 

• Fitting on cluster model, applying bulk. 
• Reproducing SiO2 polymorphs

Potential modeling by fitting



!19

[2] J. Behler, S. Lorenz, and K. Reuter, J. Chem. Phys. 127, 014705(2007)

Construction of proper and simple descriptors

3-dimensional coordinates are not appropriate.

e.g.) Descriptor based on Fourier expansion on fcc(111) surface structure[2]

HOWEVER… Such an expansion is needed  to construct one by one 
and is not is not applicable to a complex surfaces and.

• Input layer depends on the total amount of atoms

• Impossible to apply for extended systems

• Permutation symmetry for the same particles are broken

• The other symmetries are not considered 

Descriptor, symmetry are the keywords.

Problem of NNP modeling
In 1995,  NN fitting for interatomic potential has been reported [1]. But… 

[1] J. Chem. Phys. 103 (10), 8 (1995) .
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1. Introduction of Symmetry Functions describing local environments

G1
i =

allX

j 6=i

e�⌘(Rij�Rs)
2

fc(Rij), (2)

G2
i = 21�⇣

allX

j,k 6=i

(1 + � cos ✓ijk)
⇣ e�⌘(R2

ij+R2
ik+R2

jk)fc(Rij)fc(Rik)fc(Rjk), (3)

• Indexing the local environments based on lengths and angles

• They have a invariance for translational and rotational operations

2. Dividing the total energy into atomic energies

input and the output layer are one or more ‘‘hidden layers,’’
each with a certain number of nodes. All nodes in each
layer are connected to the nodes in the adjacent layers by
real-valued weight parameters, which initially are chosen
randomly. For a given set of coordinates the output of the
NN is then given by the expression

 E i ! f2
a

!
w2

01 "
X3

j!1

w2
j1f

1
a

"
w1

0j "
X2

!!1

w1
!jG

!
i

#$
: (1)

Here, wkij is the weight parameter connecting node j in
layer k with node i in layer k# 1, and wk0j is a bias weight
that is used as an adjustable offset for the activation func-
tions fka. Activation functions are typically nonlinear func-
tions that introduce the capability to fit nonlinear functions
into the NN [5 ,6]. In the present work the hyperbolic
tangent has been used as an activation function in the
hidden layers, and a linear function for the output layer.
Since the weight parameters initially are chosen randomly,
the output of the NN does not correspond to the correct
total energy, but since the latter is known for a set of points
from DFT calculations, an error function can be con-
structed and minimized to optimize the weight parameters
in an iterative way. The optimized set of weights obtained
can then be used to calculate the potential energy for a new
set of coordinates.

This NN structure has several disadvantages that hinder
its application to high-dimensional PESs. Since all weights
are generally different, the order in which the coordinates
of a configuration are fed into the NN is not arbitrary, and
interchanging the coordinates of two atoms will change the
total energy even if the two atoms are of the same type.
Another limitation related to the fixed structure of the
network is the fact that a NN optimized for a certain
number of degrees of freedom, i.e., number of atoms,
cannot be used to predict energies for a different system
size, since the optimized weights are valid only for a fixed
number of input nodes. Thus, in order to represent PESs
useful for all system sizes, a new NN topology has to be
introduced.

The main idea is to represent the total energy E of the
system as a sum of atomic contributions E i, an approach
that is typically also used in empirical potentials

 E !
X
i
E i: (2)

The general structure of this new network topology is
shown schematically in Fig. 2 for a system consisting of
three atoms and all associated degrees of freedom. The
fR"i g represent the Cartesian coordinates " of atom i. In a
first step these coordinates are transformed into a set of
symmetry function values fG!

i g for each atom i. These
symmetry function values describe the energetically rele-
vant local environment of each atom and are subsequently
used as input for the NN. They depend on the positions of
all atoms in the system, as indicated by the dotted arrows.

For each atom in the system there is now a ‘‘standard’’ NN
(cf. Fig. 1), which we call subnet Si and which after the
weight optimization yields the energy contribution E i to
the total energy E . Summing these energy contributions
then finally yields the total energy of the system. To ensure
the invariance of the total energy with respect to the
interchanging of two atoms the structure of all subnets
and the values of the weight parameters are constrained
to be identical in each Si.

The crucial point is the introduction of a new type of
symmetry function. While other types of symmetry func-
tions have been used before [5 ], in our approach the
symmetry function values of each atom reflect the local
environment that determines its energy; i.e., two structures
with different energies must yield different sets of symme-
try function values, while identical local environments
must give rise to the same set. Furthermore, the symmetry
function values must be invariant with respect to a rotation
or translation of the system. Finally, the number of sym-
metry functions must be independent of the coordination of
the atom, because the coordination number of an atom can
change in a MD simulation, while the structure of the
subnets must not be changed if the NN is to remain
applicable generally.

Symmetry functions can be constructed from atomic
positions in a way similar to empirical potentials. But
while in the latter case these terms are used to construct
directly the total energy of the system, in the case of the
NN they are used only to describe the structure. The
assignment of the energies to the structures is done in a
second step by the NN.

In order to define the energetically relevant local envi-
ronment we employ a cutoff function fc of the interatomic
distance Rij, which has the form

 fc$Rij% !
8<
:

0:5 &
h
cos

%
#Rij
Rc

&
" 1

i
for Rij ' Rc;

0 for Rij > Rc:
(3)

 

FIG. 2. Structure of the neural network as applied in this Letter
to a system containing three atoms. The Cartesian coordinates of
atom i are given by R"i . These are transformed to a set of !
symmetry function values G!

i describing the local geometric
environment of atom i, which depends on the positions of all
atoms in the system as indicated by the dotted arrows. The
symmetry function values of atom i then enter the subnet Si
yielding the energy contribution E i of atom i to the total energy
of the system E . The structure of the subnets corresponds to the
neural network shown in Fig. 1.

PRL 98, 146401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
6 APRIL 2007

146401-2

• Keeping permutation symmetry for the 
same particle


• Easy to extend a system size (or 
number of particles) by adding subnets

Behler-Parrinello Ansatz
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1

4

2

3

Atomic configurations

DFT

Total E 

Symmetry function vector Gk={Gk1,Gk2,…}
Describing the local environments

G1

G2

G3

G4

NN1

NN1

NN1

NN2

E1

E2

E3

E4

E

• Total INPUT dimension: input of subnetworks x number of atoms 

• Same parameters on the subnetworks are used for the same atomic species 

• It is easy to expand the number of atoms by just adding the subnetwork.

Flow of constructing NNP
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Total flow chart of NNP

Type of ML potentials:（１）Descriptors（２）modeling

Keeping in mind their a merit, a purpose, and a issue

Raw data

Nα

Descriptor

Pre-
cond.

予測

Sampling

Modeling

Analysis

Prediction

DFT results

（X）atomics configurations

（Y）total energy (or forces)

• Symmetry Function

• Structural fingerprint

• SOAP

• Coulomb Matrix

• MBTR

Neural network

Polynomial exp.

Gaussian process

Kernel ridge

Mixture models

High-Throuput MD

• Structure optimization

• Materials screening

• Large-scale simulation
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GAP and SOAP
VOLKER L. DERINGER AND GÁBOR CSÁNYI PHYSICAL REVIEW B 95 , 094203 (2017)
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FIG. 2. Potential-energy scans for an isolated carbon dimer. This
plot, with DFT data as reference (blue), allows us to assess the use
of different structural descriptors: all three combined are needed for
a high-quality fit (see text).

To illustrate the role of the combined descriptors, we use
different (and increasingly complex) GAP models to compute
the potential-energy curve for an isolated carbon dimer; these
models have been fitted to the full bulk and surface training
set described below that additionally incorporates DFT data
points between 0.8 and 3.7 Å in small increments. The results
are summarized in Fig. 2: GAP models using 2b descriptors
only, or a combination of 2b+3b, reproduce the minimum
and the repulsion at small C-C distances reasonably well, but
the longer-range behavior is not yet correctly described. An
interesting result is seen when using a many-body descriptor
only: the fit is very good for the region where data points
(blue circles) are provided, but shows unphysical behavior at
r < 0.8 Å; this can, and will, then lead to bad extrapolation in
practical simulations. By contrast, a GAP model combining all
three descriptors [Eq. (12)] gives a highly satisfactory result
(red line in Fig. 2).

III. COMPUTATIONAL METHODS

A. General protocol for melt-quench simulations

Structural data were obtained from melt-quench MD,
following protocols that are well established for a-C [24,26].
Initial simulations were performed in the DFT framework,
subsequent ones with GAP, but both employed the same
temperature protocol. For each simulation, an (unstable)
simple-cubic lattice of carbon atoms was generated at the
appropriate density and held at a constant temperature of 9000
K for 3 ps. The simulation cell was then held in the liquid state
at 5000 K (3 ps), quenched with an exponentially decaying
temperature profile (0.5 ps), and finally annealed at 300 K
(3 ps). The time step was 1 fs in all MD simulations.

B. DFT-based (“ab initio”) molecular dynamics

Structures for initial training, as well as benchmarks for
a-C properties, were generated using DFT-based ab initio MD,
using the QUICKSTEP scheme and a stochastic Langevin ther-

mostat [61] as implemented in CP2K [62,63]. Electronic wave
functions were described at the ! point using a mixed-basis
scheme with Goedecker-Teter-Hutter pseudopotentials [64]
and a cutoff energy of 250 Ry. Double-ζ quality basis functions
were used for the carbon 2s and 2p levels.

Exchange and correlation were treated in the local density
approximation (LDA) [65], both during ab initio MD and
training-data generation. This functional, despite its simplicity,
has long been used for atomistic simulations of a-C and is still
the de facto standard for many current applications [15,28,29].
Further work may be concerned with the application of
higher-level DFT methods, such as computationally much
more expensive hybrid functionals, or the implementation of
dispersion corrections; these will likely be interesting additions
to the GAP framework, but are beyond the scope of this study.

C. Construction of the training database

Our training database contains structural snapshots from
ab initio MD and also, as it is iteratively extended, from GAP-
driven simulations. No matter how generated, all structures
are then subjected to single-point DFT-LDA computations to
yield well-converged energies and forces for training. This was
done using CASTEP [66] with dense reciprocal-space meshes
(maximum spacing 0.03 Å−1) [67], a 650-eV cutoff for plane-
wave expansions, and an extrapolation scheme to counteract
finite-basis errors [68]. Gaussian smearing of 0.1 eV width
was applied to electronic levels. The halting criterion for SCF
iterations was #E < 10−8 eV.

Initial training data were computed for snapshots from
ab initio MD melt-quench trajectories, and a preliminary GAP
was fitted to those data. The resulting potential reproduced
the structure of the 9000-K liquid well, that of the 5000-K
liquid satisfactorily, but not yet that of the amorphous phase.
In retrospect, this is easily understood: the 9000-K liquid is
highly diffusive, and so one single 3-ps trajectory apparently
contains sufficiently different atomic environments to sample
configuration space during training. A quenched amorphous
structure, by contrast, is essentially one single snapshot with
thermal fluctuations but no major changes in connectivity.
Training from DFT data alone would thus incur significant
expense, as each uncorrelated a-C sample would require a
full melt-quench trajectory (9500 steps) of which only the last
snapshot was of use.

Instead, an initial GAP was used to generate liquid
structures at 5000 K, which were then briefly re-equilibrated
(500 steps) and quenched (500 steps) using ab initio MD. This
was done for 10 uncorrelated structures each at 2.0, 3.0, 3.25,
and 3.5 g cm−3, thus placing more emphasis on high-density
amorphous phases which are richer in tetrahedral (“sp3”)
motifs and thus structurally most different from the liquids.

The resulting, amended database was used to train a new
GAP, which was further extended iteratively by performing
melt-quench simulations fully driven by the previous GAP
version, as is common practice in the development of ML
potentials [40,47]. Thereby, all GAP-MD simulations were
carried out using a Langevin thermostat as implemented in
QUIPPY (http://www.libatoms.org) and the same temperature
profiles as in the CP2K simulations. A typical protocol included
the generation of 100 independent structures at densities of

094203-4

PHYS. REV. B 95, 094203 (2017) .

241714-8 Fujikake et al. J. Chem. Phys. 148, 241714 (2018)

FIG. 6. Molecular dynamics simulations of Li diffusion in a graphite-like framework at 1000 K. Results of GAP-MD have been structurally benchmarked
against DFT-MD data. (a) Exemplary GAP-MD trajectory visualized by plotting coordinates of Li atoms at equally spaced time intervals as purple dots, whereas
the carbon framework is shown at a single time step to ease visibility. (b) Radial distribution function (RDF) analysis for Li–C contacts in this DFT-MD trajectory
(green) and for five separate GAP-MD trajectories computed in the same structure (purple). (c) The same for the Li–Li RDF. One exemplary dataset is shown
for a GAP-MD simulation using a potential without an effective Li–Li potential included (Sec. II D), and this clearly evidences overestimated Li–Li interactions
at distances up to 4 Å (dashed light blue line). (d) The same for the angular distribution function (ADF), determined for all C–Li–C angles with a maximum
bond length of 3.0 Å.

these RDF analyses, the ADF in Fig. 6(d) is a more complex
structural indicator and is also very satisfactorily reproduced
by GAP-MD.

We assume that the remaining small differences, in part,
may be due to likewise small differences in the underlying DFT
methods: different implementations and pseudopotentials are
used for generating the GAP reference data and the DFT-
MD trajectory. Still, the GAP reproduces all general structural
features.

FIG. 7. Vibrational densities of states (VDOS), plotted for individual MD
trajectories as in Figs. 6(b) and 6(c) and separately for the host structure (top)
and guest atoms (bottom).

As a final means of validation, we extract from the tra-
jectories the vibrational densities of states (VDOS), using
the velocity–velocity autocorrelation function. This provides
information about the atomic motion in the simulations and a
link between the local structure and diffusion dynamics. We
inspect the VDOS individually, both for the host framework
and the Li atoms, in Fig. 7. There is good agreement between
DFT and GAP data, and the general features of the VDOS are
well reproduced by our model. This is particularly so in the
higher-frequency range (>15 THz), which relates mostly to
interatomic interactions (such as bond-stretching vibrations).
At lower frequencies, we observe small discrepancies, while
the general trends are preserved. This frequency range is com-
monly associated with the diffusion process, and so the above
can be understood, considering the short run-time of the calcu-
lation and especially the small size of the systems (again, both
are due to the inherent computational and scaling limitations
of the DFT benchmark and do not change the principal validity
of our tests).

V. CONCLUSIONS

Machine-learning-based interatomic potentials for guest
atoms in host structures can be created by fitting to the energy
and force differences which they induce. We exemplified this
for Li intercalation in graphitic and disordered carbon struc-
tures, using the GAP framework to construct an interatomic
potential model. Notwithstanding notable remaining numeri-
cal energy errors, reaching up to ⇡0.4 eV/at. for Li insertion,

c.f.：Li Diffusion in graphites  
Fujikake et al., J. Chem. Phys. 148, 241714 (2018).

GAP: Gaussian Approximation Potential 

✓ Fitting by Gaussian Process Regression
✓ Decomposing 2-, 3-, many-body terms
✓ 2- and 3-body: Gaussian kernel
✓ Many-body: Simple dot product kernel

Descriptor
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In the above expression, the δ are scaling parameters, and
each corresponds to the distribution of energy contributions
that a given interaction term has to represent. We choose the
largest value for the 2b terms, which describe the largest share
of the total energy; on top of that, we add a 3b term, and finally
the many-body term with the smallest δ(d ).

The local energy corresponding to each descriptor d ∈
{2b,3b,MB} is given by a linear combination of kernel
functions [35]

ε(d )(q(d )) =
N

(d )
t∑

t=1

α
(d )
t K (d )(q(d ),q(d )

t

)
, (2)

where t denotes one of Nt training configurations qt , each
of which attains a weighting coefficient αt during fitting, and
K is a covariance kernel which quantifies how similar the
input configuration q is to the t th training configuration qt .
In practice, we sparsify the representation and only allow the
sum to range over a number of “representative points” drawn
from the full training database (Nt ≪ Nfull). The number of
representative points differs for each descriptor and must be
carefully controlled during training.

Both for 2b and 3b contributions, we use a squared
exponential kernel [35]
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θ2
ξ

⎤

⎦ , (3)

where ξ is an index running over the components of the
descriptor vector q(d ). In the case of pairs, the descriptor has
one single scalar component (namely, the distance r12 between
the two atoms involved):

q(2b) = |r2 −r1| ≡r12 ; (4)

for triplets, we do not directly use the natural coordinates r12,
r13, and r23, but a different form to enforce symmetry over
permutation of the neighbor atoms 2 and 3 [52]:

q(3b) =

⎛

⎝
r12 + r13

(r12 −r13)2

r23

⎞

⎠. (5)

Note that with this choice of descriptors, the first term in
Eq. (1) is equivalent to a pair potential, and the second is a
generic three-body potential, but in the GAP framework both
do not impose constraints on the specific functional form.

For the many-body term, we use the recently introduced
smooth overlap of atomic positions (SOAP) [53] descriptor,
which has proven successful in generating GAP models for
tungsten [40], in classifying diverse molecular and solid-state
structures [59], and very recently in constraining structural
refinements of amorphous Si [60]. We briefly review the most
pertinent features; detailed formulas and derivations are in
Ref. [53]. SOAP starts from the neighborhood density of a
given atom a, defined as

ρa(r) =
∑

b

exp
[
−(r −rab)2

2σ 2
at

]
× fcut(rab), (6)

where the sum is over neighboring atoms, and the cutoff
function fcut, which ensures compact support, goes smoothly

to zero at rcut over a characteristic width r(. The parameter
σat ultimately controls the smoothness of the potential. The
neighbor density is expanded into a local basis of orthogonal
radial basis functions gn and spherical harmonics Ylm,

ρa(r) =
∑

nlm

c
(a)
nlm gn(r)Ylm(r̂), (7)

and the expansion coefficients are used to form the spherical
power spectrum
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which is invariant both to permutations over neighbors and to
three-dimensional (3D) rotations of the neighbor environment.
We use the elements of a finite truncation of the power
spectrum (up to n ! nmax and l ! lmax) as components of
the many-body descriptor vector q(MB)

a , which furthermore is
normalized to have unit length.

The kernel function for the SOAP term is the simple dot
product
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and we find it advantageous to raise it to a small integer power
for a sharper distinction between different environments. This
gives the final kernel

K (MB)(q(MB)
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t

)
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∣∣q(MB)
a · q(MB)

t
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This dot product kernel is a natural choice to use with the
power spectrum descriptor, as it makes the kernel equivalent
(up to normalization) to the integrated overlap of the original
neighbor densities
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The expression for the total energy in our GAP model is
therefore given by
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where all fitting coefficients α enter linearly, and therefore we
can obtain them simply using linear algebra. This is in contrast
with the difficult nonlinear parameter optimization required
both for traditional interatomic potentials and for some other
ML schemes, e.g., artificial neural networks.

The above discussion does not include the prescription
for obtaining the linear fitting coefficients. In practice, this
is complicated due to the fact that the quantum-mechanical
data are only available in the form of total energies, atomic
forces, and virial stresses. The full formalism simultaneously
includes sparsification, multiple energy terms, and fitting to
total energies and their derivatives; it is given elsewhere [52].
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In the above expression, the δ are scaling parameters, and
each corresponds to the distribution of energy contributions
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of the total energy; on top of that, we add a 3b term, and finally
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ε(d )(q(d )) =
N

(d )
t∑

t=1

α
(d )
t K (d )(q(d ),q(d )

t

)
, (2)
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where ξ is an index running over the components of the
descriptor vector q(d ). In the case of pairs, the descriptor has
one single scalar component (namely, the distance r12 between
the two atoms involved):

q(2b) = |r2 −r1| ≡r12 ; (4)

for triplets, we do not directly use the natural coordinates r12,
r13, and r23, but a different form to enforce symmetry over
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q(3b) =

⎛

⎝
r12 + r13

(r12 −r13)2

r23

⎞

⎠. (5)

Note that with this choice of descriptors, the first term in
Eq. (1) is equivalent to a pair potential, and the second is a
generic three-body potential, but in the GAP framework both
do not impose constraints on the specific functional form.
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smooth overlap of atomic positions (SOAP) [53] descriptor,
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where all fitting coefficients α enter linearly, and therefore we
can obtain them simply using linear algebra. This is in contrast
with the difficult nonlinear parameter optimization required
both for traditional interatomic potentials and for some other
ML schemes, e.g., artificial neural networks.

The above discussion does not include the prescription
for obtaining the linear fitting coefficients. In practice, this
is complicated due to the fact that the quantum-mechanical
data are only available in the form of total energies, atomic
forces, and virial stresses. The full formalism simultaneously
includes sparsification, multiple energy terms, and fitting to
total energies and their derivatives; it is given elsewhere [52].
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DeePMD

So far, GDML has only been used for relatively small
molecules.
In this Letter, we introduce a neural network (NN) based

scheme for MD simulations, called deep potential molecu-
lar dynamics (DPMD), which overcomes the limitations
associated with auxiliary quantities like the symmetry
functions or the Coulomb matrix (All the examples
presented in this work are tested using the DeePMD-kit
package [21], which is available at [22]). In our scheme, a
local reference frame and a local environment is assigned to
each atom. Each environment contains a finite number of
atoms, whose local coordinates are arranged in a symmetry
preserving way following the prescription of the deep
potential method [23], an approach that was devised to
train a NN with the potential energy only. With typical
AIMD data sets, this is insufficient to reproduce the
trajectories. DPMD overcomes this limitation. In addition,
the learning process in DPMD improves significantly over
the deep potential method thanks to the introduction of a
flexible family of loss functions. The NN potential con-
structed in this way reproduces accurately the AIMD
trajectories, both classical and quantum (path integral),
in extended and finite systems, at a cost that scales linearly
with system size and is always several orders of magnitude
lower than that of equivalent AIMD simulations.
In DPMD, the potential energy of each atomic configu-

ration is a sum of “atomic energies” E ¼
P

iEi, where Ei is
determined by the local environment of atom i within a
cutoff radius Rc and can be seen as a realization of the
embedded atom concept. The environmental dependence
of Ei, which embodies the many-body character of the
interactions, is complex and nonlinear. The NN is able to
capture the analytical dependence of Ei on the coordinates
of the atoms in the environment in terms of the composition
of the sequence of mappings associated with the individual
hidden layers. The additive form of E naturally preserves
the extensive character of the potential energy. Because
of the analyticity of the atomic energies, DPMD is, in
principle, a conservative model.
Ei is constructed in two steps. First, a local coordinate

frame is set up for every atom and its neighbors inside Rc
[24]. This allows us to preserve the translational, rotational,
and permutational symmetries of the environment, as
shown in Fig. 1, which illustrates the format adopted for
the local coordinate information fDijg. The 1=Rij factor
present in Dij reduces the weight of the particles that are
more distant from atom i.
Next, fDijg serves as input of a deep neural network

(DNN) [25], which returns Ei in output (Fig. 2). The DNN is
a feed forward network, in which data flow from the input
layer to the output layer (Ei), through multiple hidden layers
consisting of several nodes that input the data dinl from the
previous layer and output the data doutk to the next layer. A
linear transformation is applied to the input data, i.e., d̃k ¼P

lwkldinl þ bk, followed by action of a nonlinear function

φ on d̃k, i.e., doutk ¼ φðd̃kÞ. In the final step from the last
hidden layer to Ei, only the linear transformation is applied.
The composition of the linear and nonlinear transformations
introduced above provides the analytical representation of
Ei in terms of the local coordinates. The technical details of
this construction are discussed in the Supplemental Material
[26]. In our applications, we adopt the hyperbolic tangent for
φ and use five hidden layers with decreasing number of
nodes per layer, i.e., 240, 120, 60, 30, and 10 nodes,
respectively, from the innermost to the outermost layer. It
is known empirically that the hidden layers greatly enhance
the capability of neural networks to fit complex and highly

ez

ey
ex

z

x

y

ij

ij

ij

ij

atom i

atom j

R

or

FIG. 1. Schematic plot of the neural network input for the
environment of atom i, taking water as an example. Atom j is a
generic neighbor of atom i, ðex; ey; ezÞ is the local frame of atom
i, ex is along the O─H bond, ez is perpendicular to the plane of
the water molecule, ey is the cross product of ez and ex, and
ðxij; yij; zijÞ are the Cartesian components of the vector Rij in this
local frame. Rij is the length of Rij. The neural network input Dij
may either contain the full radial and angular information of atom
j, i.e., Dij ¼ f1=Rij; xij=R2

ij; yij=R
2
ij; zij=R

2
ijg or only the radial

information, i.e., Dij ¼ f1=Rijg. We first sort the neighbors of
atom i according to their chemical species, e.g., oxygens first then
hydrogens. Within each species, we sort the atoms according to
their inverse distances to atom i, i.e., 1=Rij. We use fDijg to
denote the sorted input data for atom i.

FIG. 2. Schematic plot of the DPMD model. The frame in the
box is an enlargement of a DNN. The relative positions of all
neighbors with respect to atom i, i.e., fRijg, is first converted to
fDijg, then passed to the hidden layers to compute Ei.
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RDFs of ice are reported in the Supplemental Material.
A higher-order correlation function, the probability distri-
bution function of the O─O bond orientation order param-
eter Q6 [36], is additionally reported in the Supplemental
Material and shows excellent agreement between DPMD
and AIMD trajectories. In the case of the molecules, we
perform DPMD at the same temperature of the original
data, using a Langevin thermostat with a damping time
τ ¼ 0.1 ps. The corresponding distributions of interatomic
distances are very close to the original data (Fig. 4).
Scalability and computational cost.—All the physical

quantities in DPMD are sums of local contributions. Thus,
after training on a relatively small system, DPMD can be
directly applied to much larger systems. The computa-
tional cost of DPMD scales linearly with the number of
atoms. Moreover, DPMD can be easily parallelized due to
its local decomposition and the near-neighbor dependence
of its atomic energies. In Fig. 5, we compare the cost of
DPMD fixed-cell simulations (NVT) of liquid water with
that of equivalent simulations with AIMD and the empiri-
cal FF TIP3P (transferable intermolecular potential with 3
points) [41] in units of CPU core seconds/step/molecule.
While in principle the environmental dependence of Ei

is analytical, in our implementation, discontinuities are
present in the forces, due to adoption of a sharp cutoff
radius, limitation of angular information to a fixed number
of atoms, and abrupt changes in the atomic lists due to

sorting. These discontinuities are similar in magnitude to
those present in the AIMD forces due to finite numerical
accuracy in the enforcement of the Born-Oppenheimer
condition. In both cases, the discontinuities are much
smaller than thermal fluctuations and perfect canonical
evolution is achieved by coupling the systems to a
thermostat. We further note that long-range Coulomb
interactions are not treated explicitly in the current imple-
mentation, although implicitly present in the training data.
Explicit treatment of Coulombic effects may be necessary
in some applications and deserves further study.

TABLE III. The equilibrium energy and density, Ē and ρ̄, of
water and ices, with DPMD and AIMD. The numbers in square
brackets are the AIMD results. The numbers in parentheses are
statistical uncertainties in the last one or two digits. The training
AIMD trajectories for the ices are shorter and more correlated
than in the water case.

System Ē (eV=H2O) ρ̄ (g=m3)

Liquid
water

−467.678ð2Þ [−467.679ð6Þ] 1.013(5) [1.013(20)]

Ice Ih (b) −467.750ð1Þ [−467.747ð4Þ] 0.967(1) [0.966(6)]
Ice Ih (c) −468.0478ð3Þ [−468.0557ð16Þ] 0.950(1) [0.949(2)]
Ice Ih (d) −468.0942ð2Þ [−468.1026ð9Þ] 0.986(1) [0.985(2)]
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FIG. 3. Correlation functions of liquid water from DPMD
and PI-AIMD. (Left) RDFs. (Right) The O-O-O ADF within a
cutoff radius of 3.7 Å.

FIG. 4. Interatomic distance distributions of the organic mol-
ecules. The solid lines denote the DPMD results. The dashed
lines denote the AIMD results.
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FIG. 5. Computational cost of MD step versus system size, with
DPMD, TIP3P, PBEþ TS, and PBE0þ TS. All simulations are
performed on a Nersc Cori supercomputer with the Intel Xeon
CPU E5-2698 v3. The TIP3P simulations use the Gromacs
codes (version 4.6.7) [42]. The PBEþ TS and PBE0þ TS
simulations use the Quantum Espresso codes [43].
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System Ē (eV=H2O) ρ̄ (g=m3)

Liquid
water

−467.678ð2Þ [−467.679ð6Þ] 1.013(5) [1.013(20)]

Ice Ih (b) −467.750ð1Þ [−467.747ð4Þ] 0.967(1) [0.966(6)]
Ice Ih (c) −468.0478ð3Þ [−468.0557ð16Þ] 0.950(1) [0.949(2)]
Ice Ih (d) −468.0942ð2Þ [−468.1026ð9Þ] 0.986(1) [0.985(2)]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 0  1  2  3  4  5  6

R
D

F
 g

(r
)

r [Å]

DPMD O−O
DPMD O−H
DPMD H−H

DFT O−O
DFT O−H
DFT H−H

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0.5  1  1.5  2  2.5  3

P
(ψ

)

ψ [rad]

DPMD
DFT

FIG. 3. Correlation functions of liquid water from DPMD
and PI-AIMD. (Left) RDFs. (Right) The O-O-O ADF within a
cutoff radius of 3.7 Å.

FIG. 4. Interatomic distance distributions of the organic mol-
ecules. The solid lines denote the DPMD results. The dashed
lines denote the AIMD results.

10-4

10-3

10-2

10-1

100

101

102

103

104

101 102 103 104 105 106

C
P

U
 c

or
e 

tim
e 

pe
r 

st
ep

 [s
]

Number of molecules

Linear Scaling

Cub
ic 

Sc
al

in
g

DPMD
TIP3P

DFT: PBE0+TS
DFT: PBE+TS

FIG. 5. Computational cost of MD step versus system size, with
DPMD, TIP3P, PBEþ TS, and PBE0þ TS. All simulations are
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[modeling]

Framework of Behler-Parrinello NNP

[Descriptors]

・Inner coordinates (invariance for rotation)

・Based on Inverse distance 

It works well in molecular systems.
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Diffusion pathways in amorphous

Found diffusion pathways 

Problem：Too expensive to calculate with DFT
（N3 times optimization x simulation time T)   N~50, T > 1 h => 13 year 
  NEB calculation is also necessary to estimate the activation energy…

Etot = Eamorph +�ECu +�Eopt

Cu insertion term Relaxation term

Construction with Behler-Parrinello ansatz

✓  Considering amorphous matrix as “a field”
✓  Learning only energy of Cu atom with its surroundings
✓  Able to simplify the NN even for ternary systems 
✓  The calculation cost is cheaper than that of full NN 
✓  Impossible to execute the molecular dynamics
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Small system to Large system 
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All computations were carried out using an amorphous Li3PO4
(a-Li3PO4) structure created with the typical melt quenching
method: The �-Li3PO4 structure (containing 32 atoms) was
melted and equilibrated for 15 ps at 6000 K and then quenched
to 300 K at the rate of 1 K/fs. At last, the structure was equi-
librated for 3 ps at 300 K. The aforementioned process was
performed with ab initio MD. This a-Li3PO4 structure was
further relaxed with NN potential and DFT until the maximum
force acting on atoms became less than 0.01 eV/Å to obtain
the final models for the NN potential and DFT simulations,
respectively.

The two final structures are almost the same: The dis-
crepancy in the atomic positions between the two is 0.02 Å
in average and 0.05 Å at a maximum. The total free energy
is 200.93 eV in the model for the NN potential, while

200.90 eV for DFT. The final model for the DFT is shown in
Fig. 3.

It should be noted that these models are partially crystal-
lized after the annealing and relaxation procedures and thus
may not be fully relevant to represent the structure of amor-
phous Li3PO4 synthesized experimentally via the pulsed laser
deposition technique. Nevertheless, hereafter we call these
models “amorphous” for simplicity. To construct a more rea-
sonable model of amorphous Li3PO4 requires the use of much
a larger supercell and a slightly different composition. The
structure of amorphous Li3PO4 will be discussed in Sec. V.

B. Vacancy formation energy

The vacancy formation energy was defined as

Ef = E[VLi] � E[bulk] + µLi, (4)

in which E[VLi] is the total energy of the supercell containing
one Li vacancy, E[bulk] is the total energy of the disordered
Li3PO4 supercell, and µLi is the chemical potential of Li
obtained from DFT calculation of a perfect Li bcc crystal. The
supercells with a vacancy have been generated by removing
a Li atom and then relaxed the structure. Since the supercell
contains 12 Li atoms that are not equivalent to one another,
we can obtain 12 different Li vacancy formation energies.
Figure 4 shows the comparison of the vacancy formation

FIG. 3. The final structure of the amorphous Li3PO4 model (Li12P4O16) after
melt-quenching simulation. The structure was fully optimized with DFT.

FIG. 4. Li vacancy formation energies in the amorphous Li12P4O16 model
calculated by the DFT and NN potential.

energies between DFT and NN potential. The average dis-
crepancy is 0.029 eV and the maximum is 0.040 eV. The final
vacancy structures relaxed by DFT and NN potential were
also quite similar. The average and maximum differences in
atomic positions are about 0.03 Å and 0.08 Å, respectively.
From Fig. 4, we can also see that the NN potential system-
atically underestimated the energy of Li vacancy structures.
Since the energies are predicted based on the structural simi-
larity, it may occur that the NN potential gives a systematical
error for one kind of configurations. However, due to the very
complicated formula of NNs, it is difficult to analyze the origin
of such an error. On the other hand, we would like to point out
that the deviation is quite small (about 1 meV/atom) and less
than the RMSE of energy prediction. So we do not think that
this systematical underestimation affects the conclusion of the
present study.

It should be noted that the large formation energies
(⇠5 eV) obtained here mean very small probability of forma-
tion of Li vacancy. In reality, a vacancy-interstitial pair would
be formed rather than an isolated vacancy. Since the purpose
of this section is the verification of the applicability of the NN
potential in various calculations, we do not discuss the cases
with complex defects here.

C. Di�usion paths and network

Here we examine the Li vacancy diffusion network
(including the Li migration paths, barrier energies, and the
topology connection of paths) using the NEB method. This
method is frequently used to find migration paths and their
energies. In this method, a number of intermediate images,
which are constrained by imaginary “spring” force, are inter-
posed between the starting and ending equilibrium positions
of the target atom. By optimizing the atomic coordinates in
each image according to the forces given by both imagi-
nary spring and real potential energy surface, we can find the
minimum energy path of atom migration between the two equi-
librium sites. The optimization can be based on the potential
energy surface provided by the DFT calculation or classical
interatomic potential (e.g., NN potential).

In the present study, we assumed that a Li atom can
directly hop to the neighbor vacancy site when the distance

214106-8 Li et al. J. Chem. Phys. 147, 214106 (2017)

As can be seen in this figure, there are only slight discrepan-
cies between the radial distribution functions obtained from
the NN potential and DFT simulations.

The calculation speed of the NN potential MD is much
faster than the ab initio MD. For example, generating a tra-
jectory described above takes about 96 h on 192 cores (Intel
Xeon processor L5640) in the case of ab initio method, while
it takes only 4.5 h on a single core of the same processor in
the case of the NN potential. That is, the calculation speed of
NN potential MD simulations is about 4000 times faster than
the ab initio ones.

Finally, we carried out long time MD simulations (1 ns per
trajectory) to obtain reliable Li diffusivities. The results were
plotted in Fig. 7 together with the KMC results, and the mean
squared displacements of Li along these trajectories are shown
in the supplementary material (Fig. S2). As can be seen from
Fig. 7, the temperature dependence of the evaluated Li diffusiv-
ities obeys the Arrhenius law. The effective activation energy
for diffusion obtained from the linear fitting of the Arrhenius
law is 0.59 eV for the MD results with the NN potential, which
qualitatively agrees with our KMC simulation results using the
same NN potential. The quantitative difference in the diffusion
coefficients seen in Fig. 7 between the MD and KMC can be
attributed to the jump frequency used in our KMC simulations:
The same value of 1013 s 1 was set to the jump frequencies of
all the transitions, which must be a very crude approximation.

V. LARGE-SCALE SIMULATION OF Li DIFFUSION
IN AMORPHOUS Li3PO4

A. Amorphous Li3PO4 structure

By means of DFT calculation, the structure and properties
of crystalline Li3PO4 and LiPON have been studied,32,34,50,51

but the theoretical research on amorphous Li3PO4 is still
scarce. We used the NN potential developed in the present work

to construct large-scale amorphous Li3PO4 models. Accord-
ing to the experimental observation,38,52 the composition of a
Li3PO4 thin film fabricated by pulsed laser deposition is often
slightly different from the stoichiometric one. The ratio of
Li/P is about 2.9 according to the inductively coupled plasma
atomic emission spectroscopy.38 The deviation from the stoi-
chiometric value can be attributed to the partial condensation
reaction of Li3PO4, i.e., 2Li3PO4 ! Li4P2O7 + Li2O, where
the resultant Li2O is lost during the fabrication.

The amorphous models having similar Li/P ratio were
generated as follows. We started from three crystalline super-
cells composed of 16, 64, and 128 Li3PO4 units. Then, one,
three, and six Li2O units were removed from the supercells
to set the Li/P ratio as 2.875, 2.906, and 2.906, respectively.
The supercells contain 125, 503, and 1006 atoms, respectively.
For the three initial structures, the amorphous models were
generated by the simulated annealing method with the NN-
potential-based MD. For comparison, ab initio MD was also
used to perform the same simulated annealing procedures on
the smallest model (Li46P16O63). The detailed procedure is
as follows: (1) initial structures were heated to 2000 K and
thermalized for 30 ps; (2) the structures were subsequently
quenched to 300 K with a speed of 0.5 K/fs; (3) the final struc-
tures were equilibrated for 5 ps at 300 K and then relaxed
until the maximum force acting on an atom was smaller than
0.01 eV/Å.

The resultant structures are shown in Fig. 10. We can
see a strong similarity between the structures of Li46P16O63
created by the NN potential and ab initio MD. This demon-
strates that the NN potential can reproduce final structures of
the melt-quench DFT simulations. On the other hand, it is
also noticeable that the generated Li46P16O63 structures are
partially crystallized. The arrangements of Li and P atoms
in the Li46P16O63 structures are analogous to those in � and
�-Li3PO4, though the orientations of P–O tetrahedrons are

FIG. 10. The structures of amorphous
Li3PO4 created by the melt-quenching
simulations. (a) The resultant structures
with different size, and the shape of
P2O7

4 dimmers inside them. (b) The
radial distribution functions of corre-
sponding amorphous structures. Each
function is averaged over 5 ps MD run
at 300 K.

DFT for small cell Simulation for large cell

NN

Reproduce the RDF and Diffusion constant estimated by DFT

Small, accurate 
training data-sets Scale up with ML potential
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The phonon density of state (DOS) calculated from ML force fields. 
[Science, 1997, 275, 1925–1927; Europhys. Lett., 2002, 60, 269–275; Phys. Rev. 
Lett., 1985, 54, 441–443]

Amorphous model Phonon density of state

1728 atoms

It is possible to anneal slowly for large-scale system by ML potential（0.01K/fs） 
Improving ring statistics of Si-O networks/Phonon DOS also agrees well.

W. Li, and Y. Ando, Phys, Chem. Chem. Phys. accepted.

Vibration property depending on structure



High-throughput  
Spectrum analysis
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Peak estimation 
by EM algorithm

Automatic estimation of peak position
Experimental data-sets of spectrum
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Collaborated with 永村直佳（NIMS）

���

S D

x

By hand

X-ray spectrum imaging



Need to extract peak positions of whole spectra
Fitting by gaussian mixture model?

Auto-estimation of peak position
Issue：”Automatic fitting to finding peaks in many spectra”
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���

S D

x
X-ray Spectromicroscopy
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Character mapping

Collaborated with 永村直佳（NIMS）, 松村太郎次郎（PD）, 永田賢二(AIST), 赤穂昭太郎(AIST)



Difficulty of parameter fitting
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Hard to use non-linear fitting scheme.

Even though there are no noise,  
It is not work with bad initial guess.

y = A sin(Bx + C) + D

　non-linear LS fitting 
 = searching better initial guess 

Searching based on their experience

Handling each data manually

Impossible to analyze big-data

Effective way to find（EM algorithm） 
Stochastic sampling（monte-carlo method）

解決策
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ML estimation For Gaussian distribution

ML estimation for Gaussian mixture model

Likelihood: probability of obtaining observed data

p({x1, · · · , xN}) =
NY

n=1

N(xn|µ,�2) =

✓
1p
2⇡�2

◆N

exp

 
� 1

2�2

NX

n=1

(xn � µ)2
!

p(x) =
K

∑
k=1

πkN(x |μk, σk)

ln p({x1, ⋯, xN}) =
N

∑
n=1

ln (
K

∑
k=1

πkN(xn |μk, σk))

• Summation are in log. 
• Difficult to solve analytically

• Mixing ration(sum. 1)

Maximum likelihood approach

Maximizing it 



Estimation

1. mean μk , variance σ2k, mixing ration πk

2. Latent variable  rnk for data n

Gaussian mixture model

図３-１ 混合ガウス分布の例

(1)

(2)
E (Expectation)-step：Estimate (2) from (1). 

M (Maximization)-step：Estimate (1) from (2).

μnew
k =

1
Nk

N

∑
n=1

γ(znk)xn, σ2 new
k =

1
Nk

N

∑
n=1

γ(znk)(xn − μnew
k )2, πnew

k =
Nk

N

E[znk] =
πkN(xn, θk)

∑j πkN(xn |θk)
= γ(znk)

expectation of rnk（: responsibility γ(znk)）

Depend on (1) and xn

Maximizing expectation of log. Likelihood from complete data（pairs of xn and rnk）
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Nk =
N

∑
n=1

γ(znk)

Expectation-Minimization algorithm
Collaborated with 永村直佳（NIMS）, 松村太郎次郎（PD）, 永田賢二(AIST), 赤穂昭太郎(AIST)

Likelihood monotonically increase!



 34

現在はこの手法を拡張して「ピーク本数」「pseudo Voigt関数による自動フィット」まで可能

Spectrum modeling of EM algorithm
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Time [s] 0.8 481.0 19748.5
RMSE 8707.4 933.8 66086.0

Conventional EM algorithm: the cost depends total data number　⇦    improved！

• Robust for selection of initial guess, cheap computational cost.

• Multi-trial of initialization makes improve the accuracy.

• Noisy and peak overlapping case is difficult.
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Key consideration for using Informatics

“Finding”  does not mean “Understanding”

Trade of “Accuracy” and “White box”

Y =
X

i

aiXi + b

✓  Many researchers have Internet of “Mechanism”.
✓  Machine-learning does not take into account the “physical law” generally

Linear formalismNon-linear formalism

High-Accurate one
BUT BLACK BOX

NOT so high-accurate
BUT WHITE BOX

Analysis and Interpretation is must to do.
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Several problem on Materials Informatics

“Small data” rather than “Big data”
✓   Conventional Experiment: less than 100,  maximally 1,000.

✓   Systemic error depending on labs. (human, equipment, etc.) 

✓   Spectra and Simulation data is close to “Big data”.

NO universal representation 
✓  object: polymer・semiconductor・metal etc. 

✓  Scale: 1 nm ～ 1 m（9 order!!!）
✓  Diversity of representation for systems and scales

Genomics

Sequencer

“controllability (reproducibility)”  
and ”theory (prior knowledge)”

Prior cases are important 

Key aspects of 
Materials sciences
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Always starts with an issue

Not necessary to be an expert of ML.

Making a issue in materials science IS YOUR WORK

Understanding basics of ML makes us to communicate with experts. 
Communication makes us to solve our issue!

✓　Algorithm development is too difficult for materials researchers.

✓　Basic knowledge helps us to follow the cutting-edge algorithms.

✓    Important things is communication with experts.

✓　ML experts cannot make an issue from the aspect of Materials science.

✓　Our duty is making an issue by ourselves.

✓　Applying basic algorithm by ourselves initially if possible.



Take-home messages
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Always Start with an Issue

Basic Flow

✓ What do you want to know from data? 
✓ What benefits are obtained by applying machine-learning? 
✓ Can you breakdown the issue enough to solve? 
✓ NEVER just USING the machine-learning.

Raw Data

Nα

Low-dim. 
Descriptors

Pre-
cond.

Clustering

Regression

Optimization
Obs. Post-

cond.

ML Visualization

Analysis

The most important 


