

Fundamentals and Applications of FLAPW Method: HiLAPW Code

Tamio Oguchi Institute of Scientific and Industrial Research Osaka University

CMD Workshop

FLAPW Method

- The FLAPW is among the most precise and efficient first-principles methods which are able to solve density-functional-theory Kohn-Sham equations with the periodic boundary conditions.
- FLAPW =

Full-potential Linearized Augmented Plane Wave

• A great number of applications to a variety of solid systems

1. OUTLINE

- Fundamentals of FLAPW Method
 - One-electron equations and Bloch function
 - Augmented Plane Wave method
 - Linear method
 - Full-potential method
- FLAPW Codes
 - Packages open to public
 - HiLAPW code and some applications

2. OUTLINE

- Practical Aspects of FLAPW Methods
 - First-Principles Calculation Kohn-Sham Eqs.
 - Crystal Structure and Atomic Position
 - Lattice Primitive Translation Vector
 - Space Group
 - Reciprocal Lattice Brillouin Zone
 - k-point Integration
 - Eigenvalue Problem
 - Self-Consistent Field
 - Mixing of Electron Density

Kohn-Sham Equations

$$\mathcal{H}\psi_j(\mathbf{r}) = \left[-\frac{\hbar^2}{2m}\nabla^2 + v_{\text{eff}}(\mathbf{r})\right]\psi_j(\mathbf{r}) = \varepsilon_j\psi_j(\mathbf{r})$$

$$n(\mathbf{r}) = \sum_{j} |\psi_{j}(\mathbf{r})|^{2}$$
$$v_{\text{eff}}(\mathbf{r}) = v_{\text{ext}}(\mathbf{r}) + e^{2} \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \mu_{\text{xc}}(n(\mathbf{r}))$$

★ One-electron Kohn-Sham equations are given within the local density approximation (generalized gradient approximation) to the density functional theory.

Band Theory

How to solve the one-electron equations for particular condensed-matter systems

Periodic system → **Band theory**

Bloch Theorem

• A quantum-mechanical state in a periodic system can be specified with a wave number k

$$\mathcal{H}\psi_{j}^{\mathbf{k}}(\mathbf{r}) = \varepsilon_{j}^{\mathbf{k}}\psi_{j}^{\mathbf{k}}(\mathbf{r})$$

Dispersion relation: band structure

Brillouin Zone and Bands

BZ of fcc lattice

Band structure of fcc Al

independent quantum number

Bloch Function

 $\psi_i^{\mathbf{k}}(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}\psi_i^{\mathbf{k}}(\mathbf{r})$: Bloch theorem $\psi_i^{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_i^{\mathbf{k}}(\mathbf{r})$ $u_{i}^{\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{i}^{\mathbf{k}}(\mathbf{r})$: periodic function Fourier form $\psi_{i}^{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} \sum a_{i,\mathbf{K}}^{\mathbf{k}} e^{i\mathbf{K}\cdot\mathbf{r}}$ $= \sum_{j,\mathbf{K}}^{\mathbf{K}} e^{i(\mathbf{k}+\mathbf{K})\cdot\mathbf{r}} \quad \begin{array}{l} \textbf{K: reciprocal lattice} \\ \textbf{vector} \end{array}$ \mathbf{K} 8

Bloch Function

- Normalized in a macroscopic volume Ω
- k points in BZ are independent and sufficient

$$\psi_{j}^{\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{\mathbf{K}} a_{j}^{\mathbf{k} + \mathbf{K}} e^{i(\mathbf{k} + \mathbf{K}) \cdot \mathbf{r}}$$

$$\mathcal{H}\psi_j^{\mathbf{k}}(\mathbf{r}) = \varepsilon_j^{\mathbf{k}}\psi_j^{\mathbf{k}}(\mathbf{r})$$

Matrix elements

$$\langle \mathbf{k} + \mathbf{K}' | \mathcal{H} | \mathbf{k} + \mathbf{K} \rangle = \frac{\hbar^2}{2m} |\mathbf{k} + \mathbf{K}|^2 \delta_{\mathbf{K}',\mathbf{K}} + V(\mathbf{K}' - \mathbf{K})$$

$$V(\mathbf{K}' - \mathbf{K}) = \frac{1}{\Omega} \int d\mathbf{r} e^{-i(\mathbf{K}' - \mathbf{K}) \cdot \mathbf{r}} v(\mathbf{r})$$

10

Orthogonalization to Core Functions

$$\langle \mathbf{k} + \mathbf{K} | \phi_{\text{core}} \rangle = \frac{1}{\Omega} \int d\mathbf{r} e^{-i(\mathbf{k} + \mathbf{K}) \cdot \mathbf{r}} \phi_{\text{core}}(\mathbf{r})$$

Very slow convergency of the core functions because of localized nature.

How to Solve the Problems

1. Contributions from core (nucleus and core electron potentials, and orthogonality to core electron states) are replaced by a soft (easily Fourier transformed) potential.

→ pseudopotential

2. PW basis functions are augmented with localized functions.

→ augmented basis

3. Green's functions are used as a multiple scattering problem.

-> Korringa-Kohn-Rostoker method

Muffin-tin Potential Approximation

Crystal Potential

FCC Cu

Slater's Idea Phys. Rev. <u>51(1937)846</u>.

 $|\mathbf{r} - \mathbf{R}| \ni S$

$$\phi^{\mathbf{k}+\mathbf{K}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{k}+\mathbf{K})\cdot\mathbf{r}}$$

Augmentation waves

Plane waves

$$|\mathbf{r} - \mathbf{R}| \in S$$

$$\phi^{\mathbf{k}+\mathbf{K}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{lm} i^l a_{lm}^{\mathbf{k}+\mathbf{K}} R_l(|\mathbf{r}-\mathbf{R}|; E) Y_{lm}(\mathbf{r}-\mathbf{R})$$

 $R_l(r; E)$: radial function for energy E

 $Y_{lm}(\mathbf{r})$: spherical harmonics

Augmented Plane Wave

Secular Equation

$$\det ||\langle \mathbf{k} + \mathbf{K}' | \mathcal{H} - E | \mathbf{k} + \mathbf{K} \rangle || = 0$$

$$\langle \mathbf{k} + \mathbf{K}' | \mathcal{H} - E | \mathbf{k} + \mathbf{K} \rangle = \left\{ \frac{\hbar^2}{2m} |\mathbf{k} + \mathbf{K}|^2 - E \right\} \delta_{\mathbf{K}', \mathbf{K}}$$

$$+ \Gamma_{\mathbf{K}', \mathbf{K}}^{APW}(E)$$

Matrix elements have non-linear energy dependence due to logarithmic derivatives of the radial functions.

Problems in APW Method

 Energy dependence of the matrix elements Γ^{APW}_{K',K}(E) requires searching poles of the determinants

 → Linear Method by Andersen (1975) and Koelling-Arbman (1975)

LAPW

 2. Muffin-tin potential approximation doesn't work for less-packing or low-symmetry systems
 → Full-potential Method by Weinert (1981)
 FLAPW

Linear Method

O.K. Andersen, PRB <u>12</u>(1975)3060. D.D. Koelling and G.O. Arbman, JPF <u>5</u>(1975)2041.

- Remove the energy dependence of radial functions using Tayler expansion $R_l(r; E) \approx R_l(r; E_0) + (E - E_0)\dot{R}_l(r; E_0) + \cdots$ $\dot{R}_l(r; E_0) = \frac{d}{dE}R_l(r; E)\Big|_{E=E_0}$
- Use radial function at E₀ and its energy derivative
 to represent a radial function with any logarithmic derivative

 $R_l(r; D) = R_l(r; E_0) + \omega(D)\dot{R}_l(r; E_0)$

Linear Method

• APW \rightarrow LAPW

KKR → MTO → LMTO KKR: Korringa-Kohn-Rostoker MTO: Muffin-Tin Orbital LMTO: Linear Muffin-Tin Orbital

LAPW Method

Augmentation basis

$$\phi^{\mathbf{k}+\mathbf{K}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{lm} i^l \phi_{lm}^{\mathbf{k}+\mathbf{K}}(|\mathbf{r}-\mathbf{R}|) Y_{lm}(\mathbf{r}-\mathbf{R})$$

$$\phi_{lm}^{\mathbf{k}+\mathbf{K}}(r) = A_{lm}^{\mathbf{k}+\mathbf{K}}R_l(r;E_l) + B_{lm}^{\mathbf{k}+\mathbf{K}}\dot{R}_l(r;E_l)$$

 E_l

 $\begin{cases} A_{lm}^{\mathbf{k}+\mathbf{K}} & \text{determined from the} \\ B_{lm}^{\mathbf{k}+\mathbf{K}} & \text{boundary conditions} \end{cases}$

energy parameter usually taken at the center of the occupied partial band

Why the Linear Method Works Well?

Orthogonality to maximize the variational degree

$$\int_{0}^{S} R_{l}(r; E_{l}) \dot{R}_{l}(r; E_{l}) r^{2} dr = 0$$

Orthogonality to the core functions

$$\int_0^S R_l(r; E_l) R_{\text{core}}(r; E_{\text{core}}) r^2 dr = 0$$
$$\int_0^S \dot{R}_l(r; E_l) R_{\text{core}}(r; E_{\text{core}}) r^2 dr = 0$$

Why the Linear Method Works Well?

Energy expectation value of the orbital with the exact logarithmic derivative

$$\langle E(D) \rangle = \frac{\langle \phi_l(D) | \mathcal{H} | \phi_l(D) \rangle_S}{\langle \phi_l(D) | \phi_l(D) \rangle_S}$$
$$= E + \mathcal{O}(E - E_l)^4$$

Coulomb Potential

• Coulomb potential for smooth density distribution

$$n(\mathbf{r}) = \sum_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}} n_{\mathbf{G}} \qquad \nabla^2 v^{\mathrm{C}}(\mathbf{r}) = 4\pi e^2 n(\mathbf{r})$$
$$v^{\mathrm{C}}(\mathbf{r}) = \sum_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}} v^{\mathrm{C}}_{\mathbf{G}} \qquad v^{\mathrm{C}}_{\mathbf{G}} = \frac{4\pi e^2 n_{\mathbf{G}}}{G^2}$$

Full Potential Method M. Weinert, J. Math. Phys. <u>22</u> (1981) 2433.

• Electron density inside the sphere is replaced by a smoothed density with the exact multipole moments.

$$n(\mathbf{r}) = \begin{cases} \tilde{n}(\mathbf{r}) & |\mathbf{r} - \mathbf{R}| \in S \\ n(\mathbf{r}) & |\mathbf{r} - \mathbf{R}| \ni S \end{cases}$$

- Potential outside the sphere is given with the smoothed density.
- Potential inside the sphere can be solved with the sphere boundary conditions.

Full Potential Method

• Electron density inside the sphere

$$n(\mathbf{r}) = \sum_{lm} n_{lm}(r) Y_{lm}(\mathbf{r})$$

• Potential function inside the sphere

$$v(\mathbf{r}) = \sum_{lm} v_{lm}(r) Y_{lm}(\mathbf{r})$$

• Matrix element of potential

$$\Delta H_{\mathbf{K}',\mathbf{K}} = \langle \mathbf{k} + \mathbf{K}' \Delta v \mathbf{k} + \mathbf{K} \rangle$$

non-spherical part

FLAPW Method

- Two-dimensional slab models
 - E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, PRB <u>24</u>, 864 (1981).
 - M. Weinert, E. Wimmer and A. J. Freeman, PRB <u>26</u>, 4571 (1982).
- Three-dimensional systems
 - H. J. F. Jansen and A. J. Freeman, PRB <u>30</u>, 561 (1984).

• ABCAP

• FLEUR

- HiLAPW
- KANSAI

- QMD-FLAPW
- WIEN

HiLAPW

- 100% Original Code
 - LAPW basis functions
 - LSDA, GGA, Hubbard-U
 - Scalar relativity, Spin-orbit coupling
 - All-electron SCF full-potential scheme
 - BZ integration with tetrahedron method
 - Group theory
 - Crystal structure & element database
 - Total E, forces, DOS, ...
 - XAS, Berry phase, dielectric function, ...

optional functionalities

Hilapw

- 100% Original Code
 - Modular executables
 - fortran90
 - dynamical memory allocation
 - BLAS and LAPACK libraries
 - PSP : PostScript Plot routines
 - MPI parallelization

- Manuals and some useful data
 - www.cmp.sanken.osaka-u.ac.jp/~oguchi/HiLAPW/

HiLAPW – Executables

executables	contents			
xsets	initialization			
xlapw	SCF calculation			
xdoss	DOS			
xnewa	modification k-point data			
xwbox	electron density on 3D mesh			
xpbox	potential on 3D mesh			
xspin	addition of spin polarization			
xsymm	irreducible representation extract			
xrept	rearrangement of eigenvalues			

2. OUTLINE

- Practical Aspects of FLAPW Methods
 - First-Principles Calculation Kohn-Sham Eqs.
 - Crystal Structure and Atomic Position
 - Lattice Primitive Translation Vector
 - Space Group
 - Reciprocal Lattice Brillouin Zone
 - k-point Integration
 - Eigenvalue Problem
 - Self-Consistent Field
 - Mixing of Electron Density

First-Principles Calculation

 Local Density Approximation to Density Functional Theory — Kohn-Sham Equations

$$\mathcal{H}\psi_j^{\mathbf{k}}(\mathbf{r}) = \left[-\frac{\hbar^2}{2m}\nabla^2 + v(\mathbf{r})\right]\psi_j^{\mathbf{k}}(\mathbf{r}) = \varepsilon_j^{\mathbf{k}}\psi_j^{\mathbf{k}}(\mathbf{r})$$

Lattice Translation Vector

• Primitive Translation Vector (Bravais lattice)

$$\begin{pmatrix} t_1^x & t_2^x & t_3^x \\ t_1^y & t_2^y & t_3^y \\ t_1^z & t_2^z & t_3^z \end{pmatrix} = \begin{pmatrix} a_1^x & a_2^x & a_3^x \\ a_1^y & a_2^y & a_3^y \\ a_1^z & a_2^z & a_3^z \end{pmatrix} \begin{pmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{pmatrix}$$

• Conventional Translation Vector

$$\begin{pmatrix} a_1^x & a_2^x & a_3^x \\ a_1^y & a_2^y & a_3^y \\ a_1^z & a_2^z & a_3^z \end{pmatrix} \Leftarrow (a, b, c, \alpha, \beta, \gamma)$$

$$\begin{array}{c} a_1^x & a_2^z & a_3^z \end{pmatrix} \leftarrow (a, b, c, \alpha, \beta, \gamma)$$

$$\begin{array}{c} \text{Lattice constants} \end{array}$$

Lattice: System and Type

• Lattice system

$\left(\begin{array}{cc} a_1^x & a_2^x \end{array}\right)$	$\begin{array}{ccc} x & a_3^x \end{array}$	
a_1^y a_2^y	$\stackrel{y}{_2}$ $a_3^{\overset{y}{_3}}$	$\Leftarrow (a, b, c, \alpha, \beta, \gamma) (\alpha b) \qquad $
$\left\langle a_{1}^{z} a_{1}^{z} \right\rangle$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β

system	a	b	С	α	β	Y	type
cubic	a	a	a	90	90	90	P,I,F
tetragonal	a	a	С	90	90	90	P,I
orthorhombic	a	b	С	90	90	90	P,I,F,C
hexagonal	a	a	С	90	90	120	Р
trigonal	a	а	а	α	α	α	R
(trigonal	a	а	С	90	90	120	P)
monoclinic	a	b	С	90	90	Y	Ρ,Β
triclinic	a	b	С	α	β	Y	P 36

Lattice: System and Type

- Lattice type
- $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad F = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{1} & \frac{1}{2} & 0 \end{pmatrix}$ $I = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$ $B = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} \qquad C = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

37

Lattice: System and Type

- Number of mathematically independent lattice is 14 called Bravais Lattice.
- For example, a facecentered tetragonal lattice can be represented as body-centered tetragonal.
- Some of trigonal systems are represented as rhombohedral R or hexagonal P.

Atomic Position in a Unitcell $\begin{pmatrix} \tau_{\alpha}^{x} \\ \tau_{\alpha}^{y} \\ \tau_{\alpha}^{z} \end{pmatrix} = \begin{pmatrix} a_{1}^{x} & a_{2}^{x} & a_{3}^{x} \\ a_{1}^{y} & a_{2}^{y} & a_{3}^{y} \\ a_{1}^{z} & a_{2}^{z} & a_{3}^{z} \end{pmatrix} \begin{pmatrix} \tau_{1\alpha} \\ \tau_{2\alpha} \\ \tau_{3\alpha} \end{pmatrix}$ ${oldsymbol{ au}}_lpha$

Atomic positions are represented on the basis of the conventional lattice vectors.

Space Group

• Symmetry operation $\{\beta | \mathbf{v}_{\beta} + \mathbf{R}_{lmn}\}$

$$\{\beta | \mathbf{v}_{\beta}\} \mathbf{r} = \beta \mathbf{r} + \underline{\mathbf{v}_{\beta}}$$
 non-primitive translation vector
$$= \begin{pmatrix} \beta_{11} & \beta_{12} & \beta_{13} \\ \beta_{21} & \beta_{22} & \beta_{23} \\ \beta_{31} & \beta_{32} & \beta_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} v_{\beta}^{x} \\ v_{\beta}^{y} \\ v_{\beta}^{z} \end{pmatrix}$$

Example: Diamond Structure

- fcc $a=b=c, \alpha=\beta=\gamma=90^{\circ}$
- space group Fd-3m (#227) generators C₄[001] + (1/4,1/4,1/4) C₃[111] I + (1/4,1/4,1/4)
 atomic positions (0,0,0); (1/4,1/4,1/4)

International Tables for Crystallography

Space Group Symbol

- 1,2,3,4,6 : rotation axis
- m: mirror plane
- 2₁: twofold screw with v=1/2
- 4₂: fourfold screw with v=2/4
- a, b, c : axial glide with v=1/2 along each axis
- n: diagonal glide
- d: diamond glide
- : inversion
- 4/m : fourfold axis and mirror plane perpendicular to it
- 4/n: fourfold axis and n-glide plane perpendicular to it

Reciprocal Lattice

• Definition

R · **K** = $2\pi I$ *I* : any integer lattice vector $\mathbf{K}_{lmn} = l\mathbf{b}_1 + m\mathbf{b}_2 + n\mathbf{b}_3$

$$\mathbf{t}_{lmn} = l\mathbf{b}_1 + m\mathbf{b}_2 + n\mathbf{b}_3$$
$$\mathbf{b}_i = 2\pi \frac{\mathbf{t}_j \times \mathbf{t}_k}{\mathbf{t}_i \cdot (\mathbf{t}_j \times \mathbf{t}_k)}$$

- Brillouin zone (BZ) = unitcell of reciprocal lattice
- States with k inside BZ are independent

→ State sum = k-integration inside BZ

Brillouin Zone

Unitcell of reciprocal lattice

- parallelepiped $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ easy to treat numerically
- Voronoi Polyhedron
 - Wigner-Seitz cell

k Integration

k-point mesh

 (N_1, N_2, N_3) division of parallelepiped BZ

- Linear Tetrahedron method
- Broadening method

 \mathbf{b}_1

Eigenvalue Problem

Basis function expansion

$$\psi_j^{\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{i}} \phi_i^{\mathbf{k}} C_{ij}^{\mathbf{k}}$$

• Secular equation

 $\mathbf{HC} = \mathbf{SC}E$

• Matrix elements

$$H_{ij} = \langle \phi_i^{\mathbf{k}} | \mathcal{H} | \phi_j^{\mathbf{k}} \rangle \qquad S_{ij} = \langle \phi_i^{\mathbf{k}} | \phi_j^{\mathbf{k}} \rangle$$

Basis Functions

- Plane waves
 - pseudopotential
 - simple, fast, extendable, transferability
- Plane waves + Augmentation functions
 - all-electron scheme
 - robust, precise, complicated
- Local orbitals
 - minimal
 - real space $\rightarrow O(N)$

Mixing of Electron Density

• Simple Method

$$n_{\mathrm{in}}^{(i+1)} = (1-\alpha)n_{\mathrm{in}}^{(i)} + \alpha n_{\mathrm{out}}^{(i)}$$

• Extended Anderson Method

$$n_{\rm in}^{(i+1)} = (1-\alpha)\bar{n}_{\rm in}^{(i)} + \alpha\bar{n}_{\rm out}^{(i)}$$

$$\bar{n}_{\rm in}^{(i)} = \sum_{j=i-M}^{i} \beta^{(j)}n_{\rm in}^{(j)} \qquad \bar{n}_{\rm out}^{(i)} = \sum_{j=i-M}^{i} \beta^{(j)}n_{\rm out}^{(j)}$$

$$\min_{\beta} \int \left(\bar{n}_{\rm in}^{(i)} - \bar{n}_{\rm out}^{(i)}\right)^2 d\mathbf{r} \sum_{j=i-M}^{i} \beta^{(j)} = 1$$
50

Mixing of Electron Density

Appendix

- Logarithmic Derivatives
- Density of States
- Precision of FLAPW
- All-Electron vs. Pseudopotential
- Murnaghan's Equation of State

Logarithmic Derivative

$$L_{l}(E) = \frac{R'_{l}(S; E)}{R_{l}(S; E)} = \left. \frac{d}{dr} \ln R_{l}(r; E) \right|_{r=S}$$

The APW eigenfunction satisfies the boundary conditions (logarithmic derivatives) on the spheres among the general solutions.

Single-MT Problem

Radial Equation in Rydberg units

$$\begin{bmatrix} -\frac{d^2}{dr^2} - \frac{2}{r}\frac{d}{dr} + \frac{l(l+1)}{r^2} + v(r) - E \end{bmatrix} R_l(r; E) = 0$$

Normalization
$$\int_0^S R_l^2(r; E) r^2 dr = 1$$

Radial function
$$P_l(r; E) = rR_l(r; E)$$

$$\begin{bmatrix} -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + v(r) - E \end{bmatrix} P_l(r; E) = 0$$

$$\int_0^S P_l^2(r; E) dr = 1$$
55

Logarithmic Derivative

Wave Functions

• LAPW Basis

$$\tilde{\phi}^{\mathbf{k}+\mathbf{K}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{k}+\mathbf{K})\cdot\mathbf{r}}$$
$$\phi^{\mathbf{k}+\mathbf{K}}(\mathbf{r}) = \sum_{\alpha lm} \left[A_{\alpha lm}^{\mathbf{k}+\mathbf{K}} R_l(r_{\alpha}) + B_{\alpha lm}^{\mathbf{k}+\mathbf{K}} \dot{R}_l(r_{\alpha}) \right] i^l Y_{lm}(\hat{\mathbf{r}}_{\alpha})$$

• Degrees of Variational Freedom

$$K_{\max}$$
 l_{\max}

• Choice of MT Sphere Radius

Electron Density and Potential

$$\tilde{n}(\mathbf{r}) = \sum_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}} n_{\mathbf{G}} \qquad n(\mathbf{r}) = \sum_{\alpha LM} n_{\alpha LM}(r_{\alpha}) i^{L} Y_{LM}(\hat{\mathbf{r}}_{\alpha})$$

$$\tilde{v}(\mathbf{r}) = \sum_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}} v_{\mathbf{G}} \qquad v(\mathbf{r}) = \sum_{\alpha LM} v_{\alpha LM}(r_{\alpha}) i^{L} Y_{LM}(\hat{\mathbf{r}}_{\alpha})$$

• Accuracy of Expansion

 G_{\max} L_{\max} variational parameters?

• Choice of MT Sphere Radius

Perturbative Consideration

Second-Order Perturbation

$$\Delta \varepsilon^{\mathbf{k}} = -\frac{|\langle \mathbf{k} + \mathbf{K} | \mathcal{H} | \mathbf{k} \rangle|^2}{|\mathbf{k} + \mathbf{K}|^2 - \varepsilon^{\mathbf{k}}}$$

• Variational Parameters of the Wave Functions

$$|\mathbf{k} + \mathbf{K}| \le K_{\max}$$

 $l_{\rm max}$

Muffin-Tin Sphere Radius

When a sufficient l_{\max} is assumed,

- In case of large MT sphere radius, because of smaller volume in the interstitial region fewer PW expansion is needed.
- In case of small MT sphere radius, because of larger volume in the interstitial region more PW expansion is needed.
- A variational dimensionless parameter

$$RK_{\max}$$

- Convergency of the electron density and potential expansion should be checked, especially when GGA is used.
- For small MT spheres used, higher G_{max} may be required to represent pseudized charge density.

Muffin-Tin Sphere Radius

• Non-overlapping spheres

A margin should be considered if the atomic positions are changed, for example in a structural optimization calculation.

• Negligible penetration of the core functions outside

Within both assumptions with sufficient l_{max} and L_{max} , the accuracy does not depend on the choice of MT sphere radius but does on RK_{max} .

Total Energy vs. Muffin-Tin Radius

Precision of FLAPW Method

- Wave Functions RK_{\max}
- Electron Density and Potential

 $G_{\max} \ge 2K_{\max} \qquad L_{\max} \ge 2l_{\max}$

• Choice of MT Sphere Radius

• Over-completeness of APW Basis Functions

Since the PW basis is a complete set in all the space, an APW basis with the excessive number of PW results in indefinite solutions.

All-Electron vs. Pseudopotential

Science 351, aad3000 (2016)

69

ONCVPSP(SG15)1/QE 1.4 1.4 1.3 1.3 1.3 1.6 1.5 1.3

ONCVPSP(SG15)2/CASTEP 1.4 1.4 1.4 1.4 1.3 1.6 1.5 1.4

$$p = \frac{B_0}{B'} \left[\left(\frac{\Omega}{\Omega_0} \right)^{-B'} - 1 \right]$$
$$B_0 = -\left(\Omega \frac{dp}{d\Omega} \right)_0 \quad B' = -\frac{1}{B_0} \left(\Omega \frac{dB}{d\Omega} \right)_0$$
$$E(\Omega) = \frac{B_0 \Omega}{B'} \left[\frac{1}{B' - 1} \left(\frac{\Omega}{\Omega_0} \right)^{-B'} + 1 \right] + E'$$

1 a.u. in pressure = 1.47108×10^4 GPa

F. D. Murnaghan, Proc. Natl. Acad. Sci. USA <u>30</u>, 244 (1944).