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NATIONAL INSTITUTE OF
ADVANCED INDUSTRIAL SCHEINCE AND TECHNOLOGY (AIST)

@ Researchers (foreign nationals)- -+ 2,284(116)
[ Permanent ] [ 1,925]
[ Fixed term ] [ 359 ]
@ Administrative employees (foreign nationals)

......... 686(1)

Total number of employees : 2,970(117)

. Executives (full time) .............................. 13
. Visiting I‘eseaI‘CheI‘S ........................... 185
@ Postdoctoral researchers -:--:-owoeeeeeeeeees 190
. Technical St&ff ................................. 1,487

(As of July 1, 2016)

Number of researchers accepted through
industry/academia/government partnerships

. Companies ....................................... 1 ’856
. UniveI‘SitieS .................................... 1 ’924
. Other organizations ........................... 936

(foreign nationals : 456)
(Total number of researchers accepted in FY 2015)



Major research topics

. 4‘-” - gy = .‘v — ‘ My intereStS:
| || - ‘
v eee . * Electric-double layer

¢ O 1W 1@ L - Reaction on surface and interfaces.

Tool: Density-functional-theory based (MD) simulation.
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We need “NEW” tools

All spectrum

o S S

DTATRIATATATH

FPMD of electrochemical Interfaces

Y
N O

Spectrum
o

Spectra-data sets including 600 samples

Now we “can” obtain hundreds
thousands spectra from simulation

Efficient Analysis is necessary.
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Milestone project with Informatics

Materials Genome Initiative (MGI from 2011)

Number of Future Materials
Continuum

New Materials
to Market

Materials Continuum
Today

A=

Time

Main purpose
. Developing a Materials Innovation Infrastructure

2. Acheiving National Goals With Advanced Materials
3.Equipping the Next-Generation Materials Workforce

Using Database and machine-learning
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Our research in Ml

1. Clustering and correlation analysis of transmission spectrum of molecular junction system
2. A new descriptor of perovskites for performance estimation of fuel cells

3. Materials Search for a well-worked 2D substrate for Germanene and Stanene

4. Unsupervised clustering of PDOS in Surface system

5. Development of machine-learning potentials for Amorphous research

6. Yield prediction in experiments from Simulation (Catalyst informatics)

7. High-throughput peak fitting on many XPS spectra

8. Model selection of equivalent circuits on impedance spectroscopy

9. Model selection of preferred orientation distribution of tourmaline-grains

10.Parameter optimization of equation of states for an inner earth environment

v



So, what is informatics?
What is machine-learning?




Short introduction

Functions of ML Linear Regression (PCA)
v Prediction . B
v Characterization Y = Z a; X; +b

)

v Classification

P R iti
v Pattern Recognition Support Vector Machine (SVM)

What they do is just
“Putting points and
Drawing lines”




Representing Complex Situation

—
——
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Fitting process by Neural network

20

NOT work lines ?
JUST draw the “curve”

v

v Basis expansion (polynomial, spline etc.)
v Kernel Regression, Gaussian Process
v Neural Network

Applicable to high-dimensional data




Exploration and Exploitation

Bayesian Optimization

Sampling Points Expectation Credibility

Max Obs.:0.5923

v Based on the observation, predicting values and its “credibility” at unobserved points
v Automatically searching observable space considering predicted value and credibility.



Minimum of LTC (W/m-K)

Material Search with Bayesian Opt.
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: j,,. & & & & Fig. 2. (Color online) Stable atomistic arrangements of £5[001]/(210) Fig. 4. (Color online) (a) Trajectory of the calculated GB energy to the
o K CdP Cs.1PaCI with (a) the conventional method and (b) the kriging method. Dashed line convergence. The “conventional method” means the computation of all
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FIG. 4 (CO]OI‘ on]ine). Crystal structures of K2Cde and energy, whereas it was plotted by order of the trial number in the kriging

method (red). (b) Magnified image around the area pointed by blue arrow in

Cs, [PdCl4]I, predicted to show the low LTC of < 0.5 W/mK the ()

(at 300 K) and narrow band gap of < 1 eV.

Thermoelectric material Interface matching

PRL 115, 205901 (2015). Jpn. J. Appl. Phys. 55 (2016) 2—6.
Science Adv., 2, €1600746-1-7.



Appl. Phys. Lett. 91, 132102 (2007). Appl. Phys. Rev.4, 011105 (2017).

High-Throughput Observation

High-Throughput Experimental (HTE) methodologies

CanSr)Coyq0O CanSr)Coyg0O CanSr)Coy0O

PERERE roemyly PR RE V/K] (CagSr)Coy 9[10_5 Wm-1K-2]
(a)Electrical 60 (b)Seebeck g 5"
conductivity /x 50

FIG. 2. (a) Electrical conductivity, (b) Seebeck coefficient, and (c) power factor of the composition-spread (Ca;_,_,SryLay)3C0409 film (0 <x < 1/3 and
0 <y < 1/3). Reproduced with permission from Appl. Phys. Lett. 91, 3 (2007). Copyright 2007 AIP Publishing LLC.>°

Materials “Library” : Dispersing the several compositions on a single sheet

Observing Big Materials Space at once, Finding optimum one
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Y. N.-Ohno, M. Haze, Y. Yoshida, K. Fukushuma, Y. Hasegawa, and M. Okada, J. Phys. Soc. Jpn. 85, 093702 (2016).

Downsampling method for quasi-particle Ohs.

Quasi-particle interference (QPI) on Ag(111) surface
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Fig. 1. (a) dI/dV map of Ag(111) surface. (b) FT of (a) obtained by \ _Q s_pace IS rea"y Sparse
conventional method. Sampling in R space can be reduced.
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Always Start with an Issue

Basic flow chart of Application of Ml

PN

Basic Flow

—

Obs.

Raw Data

Low-dim.
Descriptors

v What do you want to know from data”
v What benefits are obtained by applying machine-learning?
v Can you breakdown the issue enough to solve?

v NEVER just USING the machine-learning.

Clustering

Regression

Optimization

ML
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Machine-learning potentials



Molecular dynamics simulations

Structure Optimization Normal modes and transition states

vinyl alcohol to acetaldehyde (NEB method)

60

52.14 kcal/mol
50 [

40 |

30

rgy relative to init.ene. [kcal/mol]

reaction coordinate

DMol3 TS searc h (LST/QST) 51.473 cal/mol,-10.851 cal/mol (PBE)

Determining the

WOy COJF WO LTO surface structure
s ¥ ©® ¥ @ (Nat. Commun. 8, 15975 (2017))

* From stable structure to dynamical behaviors
e Must tools for research in nano sciences

18 20 22 24
z(Li)/ A

We need to model
interaction between atoms

Phys. Chem. Chem. Phys., 2018, 20, 11586-11591



https://doi.org/10.1039/1463-9084/1999

Potential modeling by fitting

TTAM (Tsuneyuki-Tsukada-Aoki-Matsuda) Potential

Parametrizing potentials by fitting on Hartree-Fock calculations of SiO4*- + 4 point charge model

Phys. Rev. Lett. 61, 86 (1988).
Nature 339, 209 (1989).

- Dividing the electrostatic interaction to long-

U,'j (r) =U,’S':OUI0mb(r) +f()(bi +bj)cxp[(a,- +aj - r)/(b, +bj)] "c,-cj/r 6, range, Short-range parts.
 Fitting on cluster model, applying bulk.
U govlomb = &, Qj [1 —gi;(N/r+0:0;g;(r)/r, * Reproducing SiO2 polymorphs

gsio(r) = +¢r)exp(—2¢r), goo(r)=U1+11(cr)/8+3(¢r)?/4+ (¢r)3/6lexp(—2¢r).
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14 1.6 1.8 2.0
5 . . . .
Si=0 distance R (A) FIG. 2' The new C"mcm phase predicted by th:; stuqy, involving both four-
and sixfold coordination, as seen from the a axis, which corresponds to the
FIG. 1. Total energy and the Mulliken charge on an oxygen ¢ axis of low-cristobalite and stishovite. Small spheres represent silicon,

atom for T4 deformation of a SiO4*~-4e * cluster shown in the
inset. The solid circles are the cluster calculation, full curve is
the fitted potential, and the broken curve is a guide to the eye.

and large spheres represent oxygen. The unit cell is shown by dashed lines.

Discovery of new SiO2 high-pressure phase
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[1] J. Chem. Phys. 103 (10), 8 (1995) .

Problem of NNP modeling

In 1995, NN fitting for interatomic potential has been reported [1]. But...

Construction of proper and simple descriptors

e.g.) Descriptor based on Fourier expansion on fcc(111) surface structure[2]
[2] J. Behler, S. Lorenz, and K. Reuter, J. Chem. Phys. 127, 014705(2007)

HOWEVER... Such an expansion is needed to construct one by one
and is not is not applicable to a complex surfaces and.

3-dimensional coordinates are not appropriate.

* Input layer depends on the total amount of atoms

* Impossible to apply for extended systems

* Permutation symmetry for the same particles are broken
* The other symmetries are not considered

Descriptor, symmetry are the keywords.

19



Behler-Parrinello Ansatz

1. Introduction of Symmetry Functions describing local environments
all

GH =Y e BRI £ (R, (2)
JF£1

all
2

G =2'"C " (1+ AcosOyp,)¢ e "Gt EAATGD £ (Ryj) fo(Rik) fo(Rjk),  (3)
§, ki

* Indexing the local environments based on lengths and angles
* They have a invariance for translational and rotational operations

2. Dividing the total energy into atomic energies

G ) BN T S

* Keeping permutation symmetry for the il 1{ i : \
same particle | (R} :, (G} —» @_, El—>

* Easy to extend a system size (or ) /
number of particles) by adding subnets R 2] (G} @ v E,

20



Flow of constructing NNP

Describing the local environments
G a Symmetry function vector Gk={Gk!,Gk2,...}

Atomic configurations

DFT

Total E

e Total INPUT dimension: input of subnetworks x number of atoms
e Same parameters on the subnetworks are used for the same atomic species
e |tis easy to expand the number of atoms by just adding the subnetwork.

21



Total flow chart of NNP

Pre-

Sampling cond.

Raw data

DFT results
(X) atomics configurations

(Y) total energy (or forces)

—) =

\4

=N i =

-

Type of ML potentials: (1) Descriptors (2) modeling

Keeping in mind their a merit, a purpose, and a issue

22

Analysis
Descriptor Modeling Prediction
* Symmetry Function Neural network High-Throuput MD
+ Structural fingerprint Polynomial exp. - Structure optimization
- SOAP Gaussian process . Materials screening
» Coulomb Matrix Kernel ridge . Large-scale simulation
- MBTR Mixture models



PHYS. REV. B 95, 094203 (2017) .

GAP and SOAP

GAP: Gaussian Approximation Potential

v Fitting by Gaussian Process Regression
v Decomposing 2-, 3-, many-body terms
v 2- and 3-body: Gaussian kernel

v Many-body: Simple dot product kernel

Descriptor

Many-body:

2-body: g™ =1Ir,—r|=rp
ri2 +ri3
3-body: q*” = | (ri — riz)?
r23
SOAP

(Smooth overlap of atomic position)

c.f. : Li Diffusion in graphites

Fujikake et al., J. Chem. Phys. 148, 241714 (2018).
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Phys. Rev. Lett. 120, 143001 (2018).

DeePMD

[modeling] T ------------ T
Framework of Behler-Parrinello NNP ; \’

[DeSCFiptorS] E Mﬂﬁ\ naphthalene:: r aspirinz
» Inner coordinates (invariance for rotation) ol N M TSN A0 WA e

- Based on Inverse distance : M\ saljcy“/caddg: !1 MWMME
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3.0 F DPMD O-H — 4
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D /R 25 E DFT8—O ceen ]

o = : DFTO-H ---- ]

ij = {1/Rij} Z 50k DFT H-H ---- 3

(@] : 5 E
or 5 3
e 1.5:
- i R2 i /R2. 2/ R2 1.0
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0.5 F
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It works well in molecular systems. A

24



Diffusion pathways in amorphous

Problem : Too expensive to calculate with DFT
(N3 times optimization x simulation time T) N~50, T > 1 h => 13 year

NEB calculation is also necessary to estimate the activation energy...

Etot — Eamorph AECU AE‘opt

oo

Cu insertion term Relaxation term

Construction with Behler-Parrinello ansatz

v Considering amorphous matrix as “a field”

v Learning only energy of Cu atom with its surroundings
v Able to simplify the NN even for ternary systems : :

v The calculation cost is cheaper than that of full NN Found dittusion pathways
v Impossible to execute the molecular dynamics

25



Small system to Large system

=)

OLi NN

oP P

°0 N O ";'Q'\":;' i Lg‘:
DFT tor small cell Simulation for large cell

Small, accurate
training data-sets

> Scale up with ML potential

Reproduce the RDF and Diffusion constant estimated by DFT

20



W. Li, and Y. Ando, Phys, Chem. Chem. Phys. accepted.

Vibration property depending on structure

Amorphous model Phonon density of state
DY O - - '.v..'o' ~ _"‘ N Ond QYT
\ . . ;“".'/ 4 A QORI ;
| & ,\w . /":‘\‘“( ‘k“ B O expt;

\‘0" ,\_-; ’) q st 1 0 20 40 60 80 100 120 140 160 180

The phonon density of state (DOS) calculated from ML force fields.
[Science, 1997, 275, 1925-1927; Europhys. Lett., 2002, 60, 269-275; Phys. Rev.
1 728 atoms Lett., 1985, 54, 441-443]

It is possible to anneal slowly for large-scale system by ML potential (0.01K/fs)

Improving ring statistics of Si-O networks/Phonon DOS also agrees well.
27



High-throughput
Spectrum analysis



Collaborated with ;X E{E (NIMS)

Automatic estimation of peak position

Experimental data-sets of spectrum
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Collaborated with ZXFFEEE (NIMS) |, AT AKEBRER (PD) , sKHHEZ(AIST), 7RFERBAER(AIST)

Auto-estimation of peak position

Issue © ”Automatic fitting to finding peaks in many spectra”

1 2nd spectrum data

10th spectrum data

Intensity (arb. units)

~" - I ! | | I -
708 710 712 714

Kinetic Energy (eV)

- 7" X-ray Spectromicroscony

> X

Need to extract peak positions of whole spectra ~~ :
Fitting by gaussian mixture model? Character mapping
30




Difficulty of parameter fitting

Hard to use non-linear fitting scheme.

103

. . . w 8 8 8 8 8 2 288 22
Searching based on their experience ee es ge go Jo Je Je Je e 2o 2o

Handling each data manually B S I M S
® § § ¥ ¥ T VETELTC

097

Impossible to analyze big-data o 2 4 & 8 ® 2 u

y=AsmBx+C)+ D

R IRE <
Effective way to find (EM algorithm) _
Even though there are no noise,
Stochastic sampling (monte-carlo method) It is not work with bad initial guess.
- Y,
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Maximum likelihood approach

ML estimation For Gaussian distribution

p({z1, -+ TN}) = H N (@p|p, 0%) = <\/21m2> o <_2%2 Z(% —M)Q)

Likelihood: probability of obtaining observed data

\—— Maximizing it

ML estimation for Gaussian mixture model

amh Mixing ration(sum. 1)

- Summation are in log.

K
p(x) = Z mN(X | iy, 0) / - Difficult to solve analytically

k=1

N K
Inp({x{, -, Xy}) = Z In ( Z o N(x, | 1y, ok))
k=1

n=1
32



Collaborated with KT EE (NIMS) |, I AEBRER (PD) |, sKHHE Z(AIST), 7RFEREAER(AIST)

Expectation-Minimization algorithm

Gaussian mixture model

Estimation
1. mean Lk, variance o2, mixing ration ik
2. Latent variable rnk for data n

E (Expectation)-step - Estimate (2) from (1).

expectation of rik (: responsibility y(znk))

10
. N(x,, 0,)

E = =
[ 2] zj 7.N(x, | 6,) Y (Zui) \Depend on (1) and xn

3-1 BEHD Y A5 DB

N
N, = Z Y (Zui)
n=1

M (Maximization)-step : Estimate (1) from (2).

Maximizing expectation of log. Likelihood from complete data (pairs of x, and rnk) l
new __ 1 o 2 new __ 1 o new\2 IlCW_Nk
He =) V@)%, O =— 2 V@), — )Y m = ——
Nk n=1 Nk n=1 N

Likelthood monotonically increase!
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Spectrum modeling of EM algorithm

Conventional EM algorithm: the cost depends total data number «— improved !

Exchange Monte Carlo method Ordinary EM algorithm

1000000 1500000
1000000 1500000
>

y
y
y

500000
500000
|

0
l

0
1

0.8 481.0 19748.5
8707.4 i 933.8 66086.0

* Robust for selection of initial guess, cheap computational cost.
* Multi-trial of initialization makes improve the accuracy.
* Noisy and peak overlapping case is difficult.

WEIXCDOFEZIRLT TE=27AX#,  "pseudo VoigtFE#IC K2 B& 7« v by £ THEE
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Key consideration for using Informatics

“Finding” does not mean “Understanding”

v Many researchers have Internet of “Mechanism”.
v Machine-learning does not take into account the “physical law” generally

Analysis and Interpretation is must to do.

Trade of “Accuracy” and “White box”

Non-linear formalism Linear formalism

E[f(z)|Y] = kKT(K + 02I,)"'Y Y =) a;X;+b

High-Accurate one NOT so high-accurate
BUT BLACK BOX BUT WHITE BOX

35



Several problem on Materials Informatics

“Small data” rather than “Big data”

v Conventional Experiment: less than 100, maximally 1,000.
v Systemic error depending on labs. (human, equipment, etc.)

v Spectra and Simulation data is close to “Big data”.
Sequencer

NO universal representation

v object: polymer * semiconductor * metal etc.

v Scale: | nm ~ I m (9 order!!!) Genomics

v Diversity of representation for systems and scales

»

Key aspects of
Materials sciences

“controllability (reproducibility)”

and ”theory (prior knowledge)”

Prior cases are important

36



Always starts with an issue

Not necessary to be an expert of ML.

v Algorithm development is too difficult for materials researchers.
v Basic knowledge helps us to follow the cutting-edge algorithms.
v Important things is communication with experts.

Making a issue in materials science IS YOUR WORK

v ML experts cannot make an issue from the aspect of Materials science.
v Our duty is making an issue by ourselves.
v Applying basic algorithm by ourselves initially if possible.

Understanding basics of ML makes us to communicate with experts.
Communication makes us to solve our issue!

37



Always Start with an Issue -

Take-home messages

The most important

PN

v What do you want to know from data”

v What benefits are obtained by applying machine-learning?
v Can you breakdown the issue enough to solve?

v NEVER just USING the machine-learning.

Ba
—
Obs.

o . B Length between electrodes vs. S-S axis angle
A Clustering =
Na Regression
jl> Optimization .
Pre- Post- | = Analysis
cond. cond. g
Low-dim.

Raw Data

Descriptors

ML
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Visualization




