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Born-Oppenheimer approximation

◼ Based on difference in the mass, separation of the quantum 

mechanical motion is done. (the error scales as (m/M)6/4.) 
Cf. S. Takahashi, K. Takatsuka, J. Chem. Phys. 124, 144101 (2006).

◼ Existence of stable materials allows us to fix positions for the mass 

centers of nuclei. Then,
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Multiply           to the Schrödinger equation from the left, IR

and define the external potential                           for the electrons, we have,

M:

m: electron mass

nuclear mass

The Coulomb gauge is fixed as the photon propagator in a steady state.
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Hamiltonian

◼ Static state of electron system:
◼ Represented by potential:

◼ Cf: Ehrenfest’s theorem

◼ The Hamiltonian

◼ Velocities of electrons < the velocity of light,
◼ In a steady material, internal gauge field behaves as the 

Coulomb potential.
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A practice

◼ Let’s have an expression of the energy by vext.

◼ Variation of the energy w.r.t. vext, we have the 

expression in the next page.

◼ [Problem] Derive the above expression in a different 

smart manner.
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The density determining “order”

◼ Energy as a functional of vext: E[vext].

◼ A functional derivative:

◼ The order parameter : n(r).

K.Kusakabe and I. Maruyama, J. Phys. A: Math. Theor. 44 (2011) 135305.

   
 
( )

( ) ( )

( ) ( ) ( ) )1(.23

23





+=

+=−+









Onvrd

Ov
v

vE
rdvEvvE

ext

ext

ext

ext
extextext

rr

r
r

5



A theorem in quantum mechnics

◼ Consider two potentials, v1(r) and v2(r), which 

are different more than a constant from each 

other.

◼ Let |1> and |2> be an eigen state of a 

system by v1(r) and that by v2(r), respectively.

◼ Then, |1> cannot be an eigen state of v2(r)

and vice versa.

Proof: The unique continuation theorem for the Poisson equation tells us 

that the statement above is correct. See the next page.
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A proof

◼ When our system is treated by the Born-Oppenheimer 
approximation, nuclei are treated as fixed point charges.

◼ v1 (and v2 also) follows the Poisson equation.

◼ Suppose that  is a solution of both of two Schrödinger equations 
given by v1 and v2, where v1 and v2 are different from each other 
more than a constant.

◼ We have v1 =(v2 +const.) .

◼ Let N be the number of electrons.

◼ We may find an open set S in R3 , where 

 (r1+r,1, r2, 2,・ ・ ・ , rN, N) ≠ 0 

for r ∊ S.

◼ In S, we have v1(r) = v2(r) + const.

◼ By the unique continuation theorem, we conclude that  v1(r) = v2(r) 
+ const in R3.

◼ This conclusion contradicts to the assumption.
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Hohenberg-Kohn’s theorem

◼ By the last theorem, we have a next inequality which is a contradiction. 

◼ This implies existence of “one-to-one correspondence between the 

potential and the electron density”. (by Hohenberg and Kohn (1964)) 
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A logic tells physics

◼ Fixed positions of nuclei give a scalar potential vi.

◼ When v2 ≠ v1 + const., 1≠2 , where i is a ground state for a 
problem by vi. (by the unique continuation theorem.)

◼ In this case, n1 ≠ n2. (Proof by Hohenberg & Kohn.) Namely,

◼ If “n1=n2=n” and “1≠2”, then 

◼ Thus, we have a one to one correspondence between v and n.

◼ Namely, n gives v, the Hamiltonian, and the wave function of 
the ground state  with energy E[n].
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Variational energy
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Definition of Exc[n].
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Derive differential equations

◼ First, set up a differentiable energy functional.

◼ Derive a determining equations, which are to be 

self-consistent equations.
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The local density approximation I.
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The local density approximation II.
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The local density approximation III.
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Correlation energy density for LDA
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Wigner (1934)

Nozières & Pines (1958)

Hedin & Lundqvist (1971)
Perdew & Zunger (1981)

Vosko, Wilk & Nusair (1980)
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The plane-wave expansion I.
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The plane-wave expansion II.

• Dimension of the matrix can be O(103) or O(104).

• The diagonalization is often performed using the Housholder method or the    

conjugate gradient method (CG). 

However, 

• the process to find the ground state is regarded as an optimization process for

the energy functional in the function space. 

The Car-Parrinello method (Conceptually different idea)

‘
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The pseudopotential I.

Ca  4s orbital

Ca  4p orbital

All electron calc.

Pseudization calc.

All electron calc.

Pseudization calc.
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The pseudopotential II.
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The pseudopotential III.
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The pseudopotential IV.
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The pseudopotential V.
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Application for a metal

◼ The band structure of Al (FCC)

◼ The plane-wave expansion with a pseudo-potential

◼ GGAPBE96
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Covalent crystals I.

◼ Diamond and Graphite as covalent crystals.

Diamond structure Graphite structure



Band structure of cubic diamond

 bands

(bonding bands)

* bands

(anti-bonding

bands)

An energy gap appears and the system is a wide-gap

semiconductor.
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Bonding charge in hex-diamond

◼ In a covalent crystal, 

we can see charge 

density of electrons 

at each bond 

connection.

◼ Yellow object 

represents charge 

density and white 

spheres are carbons.
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Band structure of graphite

 bands

(bonding bands)

* bands

(anti-bonding

bands)

The -band is half-filled and there are small

Fermi pockets both for electrons and holes. (Semimetal)

 bands

(bonding bands)

* bands

(anti-bonding)
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Bonding charge in graphite

◼ Bonding charge 
comes from -
electrons.

◼ This system is a 
semimetal where 
the Fermi surface 
is made of -
bands.
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Techniques in the molecular dynamics

◼ Constant-Temperature Scheme (Nose & Hoover)

◼ Average of the kinetic energy is made constant by 

introduction of interaction between the system and an 

imaginative heat bath.

◼ An equation of motion with dissipative term written by an 

artificial variable is solved.

◼ Constant-Pressure Scheme (Parrinello & Rahman)

◼ The volume (cell parameters) of the system is made a 

variable.

◼ MD and structural optimization is performed using the 

enthalpy, H=E+PV.

Realization of realistic situation

`
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The Hellmann-Feynman force

i
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The internal stress I
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The internal stress II
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The internal stress III
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The calculation scheme of FPMD at a constant pressure

Input:
Atoms
Unit Cell

External Pressure
{RI}

{a0}

{i}

{F}

{}

{e}

a = (1 +e ) a0

Pext

Wave Functions

HF Force

Quantum Stress

Molecular Dynamics

{RI}

Convergence check

update

using {F} {}

{e}{RI} update

a = (1 + e)a0

by CG method

Optimized { i} {e}{RI}

Kohn-Sham eq.{

Structural

optimization

Molecular

dynamics
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Nose-Hoover method (Introduction)

◼ For constant temperature calculations, we want 

to reproduce the canonical distribution. 

Microcanonical ensemble

(E=const. N=const.)
Canonical ensemble

(T=const. N=const.)

Contact with 

artificial heat-bath

´



The equation for continuity



Classical dynamics



Liouville’s equation



The Liouville theorem



Nose-Hoover dynamics´



Canonical ensemble simulated by Nose-

Hoover dynamics

´



Nose-Hoover chain method´

Heat-bath is represented by a chain of variables h.



Parrinello-Rahman method 

(Introduction)
◼ To determine lattice structure automatically, or to 

simulate structural transformation, we want to simulate 

a system with a variable unit cell.

Compression

a’

b

a

b’

ri=xia+hib+zic
ri’=xia’+hib’+zic’

Low pressure High pressure



Definitions



Parrinello-Rahman Lagrangian



Equations of motion for CPMD

This set of equations allows us to perform the molecular dynamics 

at a constant pressure.



The equations of motion for CP-FPMD

tot
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Graphite-diamond transformation in a FPMD 

simulation

At ambient pressure At high pressure
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Formation of new bondings at the transformation

• White objects are carbon

atoms and yellow iso-

surfaces represent charge

density of electrons.

• We see new bonding

represented by bonding

charge between graphite

layers. 

• Sliding of layers

occurs due to formation

of sp3 bond connections.
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Graphitic structure stable in 40GPa range

• G-ball has a concentric 

structure made of graphitic 

sheets.

• The ball does not show 

any structural 

transformation up to ～
40GPa.

• The conductance of the 

ball becomes high at high 

pressure.

TEM image of the graphite ball

by F. Kokai et al. (2001).
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Lattice constants of graphitic system in high pressure

Exp: by Nakayama et al.

1. Calculation has been done

for hexagonal graphite with

AB stacking of graphene

layers.

2. Since we assume the 

graphite structure in calc.,

no phase transformation

is seen and the structure

is meta-stable up to 60GPa.
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What is ESopt?

◼ Based on “opt” by ISSP, Univ. of Tokyo, we 

revised the program to have Esopt. 

◼ Plane wave expansion method.

◼ Pseudo potential (Norm-conserving P.P.)

◼ Exchange correlation: PW91

◼ Some merits of “opt” succeed to ESopt.

◼ Readability of the source code

◼ Optimization of  the wavefunction by the original 

CG method
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Characteristics of basis sets for DFT calculation

• Plane-wave expansion method with pseudo-potentials

• Since plane waves are independent of position of atoms, the result is 

accurate with respect to the valence electrons.

• Accuracy of the calculation is determined by the maximum energy of plane 

waves.

• The kinetic energy is diagonal in the Fourier space, while the potential 

energy is diagonal in the real space.  FFT is used to connect two spaces.

• The Hellmann-Feynman force and the quantum stress are easily obtained.

• FLAPW (Full-potential linearlized augmented plane wave)

• The wave functions in an atomic sphere are expanded in spherical waves. 

Otherwise, they are written in the plane waves.

• Accuracy is determined by number of spherical waves and the maximum 

energy of plane waves.

• Less ambiguity compared to the pseudo-potential method.

• Pulay force has to be evaluated.
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