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Born-Oppenheimer approximation

Based on difference in the mass, separation of the quantum

mechanical motion is done. (the error scales as (m/M)%4))

Cf. S. Takahashi, K. Takatsuka, J. Chem. Phys. 124, 144101 (2006). m: electron mass

{|:| + |:|e|—ion + I:Iion ion}‘ >®‘(D'0n({ })> . .

= {E+ Einion | ¥) @ @i (1R, ) M:

nuclear mass
Existence of stable materials allows us to fix positions for the mass
centers of nuclei. Then,

Multiply({RI }\ to the Schrodinger equatlon from the left,

and define the external potential Vo (1 Z for the electrons, we have,
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- E‘LP> The Coulomb gauge is fixed as the photon propagator in a steady state.




Hamiltonlan

Static state of electron system:

Represented by potential: r\dD
e’ |

Ven 1) V0Go1)= =
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Cf. Ehrenfest’s theorem a@, p|W) = (¥] - Vv ()| ¥)

The Hamiltonian

Velocities of electrons < the velocity of light,

In a steady material, internal gauge field behaves as the
Coulomb potential.
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A practice

Let’'s have an expression of the energy by v.,..
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Variation of the energy w.r.t. v, we have the
expression in the next page.

[Problem] Derive the above expression in a different
smart manner.




The density determining “order”

Energy as a functional of v . E[V.].
A functional derivative:

v+ - Eln = 07 U )0
= [ d°rdv, (r)n(r)+ 0(5?) L)

The order parameter : n(r).

K.Kusakabe and |. Maruyama, J. Phys. A: Math. Theor. 44 (2011) 135305.



A theorem in guantum mechnics

Consider two potentials, v,(r) and v,(r), which
are different more than a constant from each
other.

Let |¥,> and |¥,> be an eigen state of a
system by v,(r) and that by v,(r), respectively.

Then, [¥,> cannot be an eigen state of v,(r)
and vice versa.

Proof: The unique continuation theorem for the Poisson equation tells us
that the statement above is correct. See the next page.



A proof

When our system is treated by the Born-Oppenheimer
approximation, nuclei are treated as fixed point charges.

v, (and v, also) follows the Poisson equation.

Suppose that y Is a solution of both of two Schrodinger equations
given by v, and v,, where v, and v, are different from each other
more than a constant.

We have v, w=(v, +const.) i.

Let N be the number of electrons.

We may find an open set S in R3, where
y(r+r,0y, Iy, 0yt = 0 Ty, o)) 70

forreS.

In S, we have v,(r) = v,(r) + const.

By the unique continuation theorem, we conclude that v,(r) = v,(r)
+ const in R3.

This conclusion contradicts to the assumption.



Hohenberg-Kohn’s theorem

By the last theorem, we have a next inequality which is a contradiction.
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This implies existence of “one-to-one correspondence between the
potential and the electron density”. (by Hohenberg and Kohn (1964))
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A logic tells physics

Fixed positions of nuclei give a scalar potential v;.

When v, # v, + const., ¥,#¥, , where ¥;is a ground state for a
problem by v;. (by the unique continuation theorem.)

In this case, n, # n,. (Proof by Hohenberg & Kohn.) Namely,
= If“n;=n,=n” and “¥,#¥,”, then

Ey = (W [T +V, W) + [dPrmv, = (W, [H, W) < (9, [H| W, ) = (8, [T +V,, | W,) + [ d°ry,

(P, [T +Vee|‘{’2>+J'd3rnv2 +_[d3rn(v1—v2):(T2|H2|‘P2>+Id3rn(v1—v2)

< (‘I'1|H2|\P1>+j'd3rn(v1 —v,)= (YT +Vee|‘P1>+Id3rnv2 +Id3rn(v1 -v,)=(¥,|H,|'¥,)=E,.
Thus, E, <E,, which is a contradiction.

Thus, we have a one to one correspondence between v and n.
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Variational energy

E, :mnin{F[n:+jn( ) v, (r )dr}
= mnin{rqpirr]<‘{’ ) j V... } mnEg, [n. (2
A2

Y

A subset of w.f.

1

n,(r)

This definition of the density functional theory does not rely on HK.
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Derive differential equations

First, set up a differentiable energy functional.

Ecen] B E.[n] G [¥] B G[¥]

Derive a determining equations, which are to be
self-consistent equations.

0I5 [w]-E((¥|w)-1)=0, {I‘ jd v, (r }1 ) =E|'Y),

5(¥|
rn(r->+(>Em[n]+V r
E> eff jd ‘r r‘ () ext( )’

()= 35 () )
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The local density approximation I.

Let’s start from the Kohn-Sham equation.

h?
—%VQ + Ue:pt(r) + UH(r) T va‘C(r) d)l(r) — 87,@25/,:(1‘) .

Here, v, is the static electron-ion potential, vy is the Hartree potential given

by ,
e“p(r’)
UH(r) — /dr/’r L I‘” )
and v, is given by the functional derivative
. 0E,c|p(r)]

Vye(T) =
i) dp(r)
The electron charge density p(r) is given as

p(r) = 2% ¢i(x)|?

for a non-magnetic system. (In case of magnetic materials, we might utilize a
local-spin-density approximation which provides us an effective model with a
spin-dependent orbital ¢; ,.) 13



The local density approximation I1.

We need to evaluate F,. and v,. by approximate methods. The simplest
method is to use the local-density approximation (LDA).

In LDA, E,. is constructed from the exchange-correlation energy per electron
at a point r in an inhomogeneous electron gas, e,.(p(r)), which is given by that
of the homogeneous electron gas with the density p.

Eq[p(r)] = [dres(p(r))p(r) .

The functional derivative of F,. in LDA is obtained via the next calculation.

0Ey[p(r)]
0. [p(r) = [dr dp(r
plr)] = [dr— p<<r)) p(r)
dezc(p)p
= Jdr dp(r)
AP lo=p(r)
Thus v, is given by,
() = S0P
dP lp=p(x)

14



The local density approximation I11.

The LDA energy functional is given by several authors. For example,
1. Wigner (1938)

2. Kohn and Sham (1965)

3. Hedin and Lundqvist (1971),

4. Vosko, Wilk and Nusair (1980),

5. Perdew and Zunger (1981)

These parametrizations use interpolation formulas to link exact results for the
exchange-correlation energy of the high-density limit of the electron gas (given
by RPA) and the exchange-correlation energy of intermediate and low-density
electron gases obtained by some approximation methods or the Quantum Monte-
Carlo calculation.

Note: there are many attempts to overcome LDA, which include the Gener-
alized Gradient Approximation (GGA), meta GGA.

15



Correlation energy density for LDA

4
Let’s introduce rg by 76 :1/(?7Z r:’j We may divide ¢, as, &,(r,)=&,(
O ] ]
Vosko, Wilk & Nusair (1980) |
0.02F . > Rt
T ™ Hedin & Lundqvist (1971)
-0.04 Perdew & Zunger (1981) i
&
© 006! N _ ——
Nozieres & Pines (1958) _pn——
-0.08 | Wigner (1934)
-0.1
-0.12

N

tn s
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The plane-wave expansion I.

The Bloch theorem tells us that each wavefunction is given by,

dnx(r) = exp(ik - r)u, k() .

Here, k is a wave vector in the first Brillouin zone and w,, x(r) is a periodic function
satisfying w, x(r + 1) = u, k(r). 1 is a lattice vector. A band index is represented
by n.

Since u, x can be expanded as

Unk(T) = % énx(G)exp(iG - 1) ,

with the reciprocal lattice vectors G, we have a plane-wave expansion of ¢, k

¢nk Z¢nk €Xp (k+G) )

17



The plane-wave expansion Il.

Using the momentum-space representation, the Kohn-Sham equation reads,

p=y 2m

= Y H(G,G)nx(G) = €nxbnk(G)
T

h2
Z [—|k + G*0a.q + Vezt(G — G) + V(G — G) + 14 (G — G’)] Onx(G')

We can obtain eigenvalues €, and eigenvectors ¢, by diagonalizing a Hamil-
tonian matrix Hy (G, G').

 Dimension of the matrix can be O(10%) or O(10%).

 The diagonalization is often performed using the Housholder method or the
conjugate gradient method (CG).

However,
« the process to find the ground state is regarded as an optimization process for
the energy functional in the function space.
The Car-Parrinello method (Conceptually different idea)

18



The pseudopotential I.

To construct a pseudopotential, we need a pseudo-wavefunction whose radial

wave function RI'T satisfies e/'T = &' and,

RFP(r) = RPA2(r) for r > ry

and Tcl Tcl
| ARPP () Prtdr = [ IRAE(r) e
1 : : : . 2 . . .
S Ca 4p orbital
r. 1 — All electron calc.

) Ca 4s orbital Pseudization calc.
-3 ——  All electron calc. 0
. Pseudization calc. r’
St ¢
0 1 2 3 4 5 1 2 3 4

19



The pseudopotential Il.

The norm-conserving property of the pseudo-potential ensures that the loga-
rithmic derivative D; of the wavefunction is maintaind up to its first order deriva-

tive against the energy, when we construct the pseudo potential.
D, is defined as,

B 1 ORy(r;e)
- Ry(r;e)  Or

DZ(E)

r=rci

The Kohn-Sham equation in a polar coordinate is,

29m Or? 2mr?

{ R 0° Wi+ 1A L 'veﬂr(r)} rRy(r;e) = erRy(r;e) .

PP
We are searching for vff; which satisfies that artificial 8—11;8— of the pseudo wave-
ODAE

= The condition is identical to the norm con-

functions is the same as the
serving condition as follows.

20



The pseudopotential Il

Making a derivative of the Kohn-Sham equation with respect to e. Multiply
rR;(r;e) to the result and subtract raRla—(:S) times the Kohn-Sham equation, we
have,

R 0% OR(r; OR;(r;e) 0?
{erl(r;s)}z = erl(r;s) i la(; ) — 7 la(; °) arerl(r;s)]

Integrate this expression with respect to r from 0 to r., we have

e x2ae B 29D
/0 |Ry(1;€)|" redr = zm{rRl(r,s) 9

T=Tcl

Thus, if we keep continuity of the pseudo potential and the norm conserving con-
dition, the resulting pseudo potential reproduces the all electron results up to the
first order derivative around the reference energy where the pseudo wavefunction
1s given.

21



The pseudopotential V.

Once the pseudo-wavefunction is obtained, the screened pseudopotential is
recovered by inversion of the radial equation,

I(1+1) 1 d?

PP/ N _ .
Vierg(r) = €1 272 + 2rREE(r) dr2[

ser,l

R (r)] -

To make a pseudopotential which is tranferable for a variety of environment,
we make an ionic pseudopotential by unscreening.

VER(r) = VER(r) = VER(r) = VEP(r)

ion,l scr,l

Here VAT and V.I'T are the Hartree and the exchange-correlation potentials cal-
culated from the valence pseudo-wavefunctions. This is the unscreening process.

22



The pseudopotential V.

The ionic pseudopotential operator is given as,

V;Iojrfg( ) V;on local ) + Z Vnonlocal,lf)l )
l

where V;J''.i(r) is the local potential and

Vnonlocal,l( ) V;onl( ) ‘/;on local( )

is the semilocal potential for the angular-momentum component [ and B projects
out the [th angular-momentum component.

The semilocal potential can be transformed into a nonlocal form by the
Kleinman-Bylander construction,

|Vnonlocal,l(lr)q)lppo( )><(I)PPO( )Vnonlocal,l(r)|
<(I)fp’0(r)|vnonloal,l( )I(I)ZPP,O(T)) ,

Vnonlocal l( ) -

PPO/, N : :
where ®; “"(r) is the atomic pseudo-wavefunction.

23



Application for a metal

The band structure of Al (FCC)

The plane-wave expansion with a pseudo-potential
GGAPBE96

[eV] 10

EF

24



Covalent crystals I.

Diamond and Graphite as covalent crystals.

@/Q 5 9
J /@ .
O

Diamond structure

==

Graphite structure

25



Band structure of cubic diamond

o™ bands
(anti-bonding
/. . | /| bands)
Er 15 ........ ....................... ................... — .......... .
10 N | ] /| : 1]
% 1 o bands
ol (bonding bands)
5 i ] 1
G X K G L KW X

An energy gap appears and the system is a wide-gap
semiconductor.

26



Bonding charge in hex-diamond

In a covalent crystal,
we can see charge
density of electrons
at each bond
connection.

Yellow object

represents charge
density and white e . <
spheres are carbons. | 0 e S

27



Band structure of graphite

c* bands
T— N— (anti-bonding
51 AL : i m* bands
S VA T (anti-bonding)
51 © bands
10l (bonding bands)
5 | c bands
| (bonding bands)
- - | 1] é |
K G M KH A L H

The nt-band is half-filled and there are small
Fermi pockets both for electrons and holes. (Semimetal)

28



Bonding charge in graphite

Bonding charge
comes from o-

» ,

- ¥

electrons. “m \ .. \al -

This system is a
semimetal where
the Fermi surface
IS made of x-
bands.




Techniques In the molecular dynamics

Constant-Temperature Scheme (Nose & Hoover)

Average of the kinetic energy is made constant by
Introduction of interaction between the system and an
Imaginative heat bath.

An equation of motion with dissipative term written by an
artificial variable is solved.

Constant-Pressure Scheme (Parrinello & Rahman)

The volume (cell parameters) of the system is made a
variable.

MD and structural optimization is performed using the
enthalpy, H=E+PV.

Realization of realistic situation

30



The Hellmann-Feynman force

The force acting on the I-th atom F; is given by,

B
dR

d d d
= — ; {(@\(dRIH)Wﬁ + (TRIW@DHWO + <¢7¢\H(dT{I\¢1:>
Here E' = v;(¢;|H|¢®;) is the Kohn-Sham energy.

When each electronic wave function ¢; is an eigenstate of the Hamiltonian,
H|p;) = €i|¢i), the last two terms (called the Pulay force) in the above expres-
sion cancel with each other. This is because,

d
> <d—m<¢i‘)H‘¢i> - <¢72\H( \</5 )| =

Thus the expression of the force becomes

F, = —

d{¢i|Pi)
g dR

=0

oE

F, — V=
d ‘dR[W " OR;

31



The Internal stress |

The expression of internal quantum stress is given by the same variational
method as force. We consider a many-electron system in a certain unit cell with
volume €2.;. The total energy is E({¢x;(r)}, {Rr}). The variational principle
tells us that the ground state energy Ey; is the minimum of E({¢x;(r)}, {R})

with respect to {¢x;(r)}, {Rr}.
To derive the stress, we introduce a symmetric (rotation-free) two-rank strain

tensor, €. The infinitesimal homogeneous scaling given by ¢ is applied as,
R; —» R, = (1+¢)Ry,
Yii(r) — Prei(r') = det(1 + )2y (r).
The ground state energy changes as,

Etot — E(E) = Etot + AE(E)

—

32




The Internal stress ||

The shift in energy AFE(e) is expanded in a series of the power of €. The
stress in the stress tensor o is defined as the coefficient of the first order in the
series and thus we have,

AE(S) = —TI"(O'S)QC@U + O(Ez):

1 O0FE(e)

ag = — . 1
o chll aeaﬁ £—0 ( )

If the strain and the stress are isotropic, the above expression reduces to the

B dE
dchll .

well-known theromdynamic formula, P =

33



Due to introduction of the strain tensor €,3, which is a symmetric tensor, we have
a modified G to be (1 — )G in the first order and €2..; becomes det(1 + £)Qeeys.
Since Q.yn(G) and S;(G) are invariant, we have the next expressions.

kin el—el local non—local ewald

Oaf = 0o5 T 045" + 0,5+ 0,5 + 043 + 0ap + Oag

okt =23 ik + G)P(k+ G)a(k + G)g,

k.G,i
el—el __ 1 / 47T|’I’L(G>|2 QGaGﬁ 5
g = 75 2 2 o
2G 1G] G

o drn(r)(pac Exc(2)),
aﬂcell/ )(pc(n) = 22el)

cell
avlocal (G)
local .
N Z & Oe af3

OV k+ G, K + G
gl = =25 3 (G — i@ @) 1 )
ki GG I, O€ap

Y

I 8
ewald Yewald
0 E : ar,

a _ n* o _ )
P = Bl chll 85aﬂ

We have introduced a reference coordmate of atomic positions, q;, which satisfies
R;(t) = (1 +¢&)a:(?).
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The calculation scheme of FPMD at a constant pressure

Input: Unit Cell ——— {a}
Atoms —— {R}

Structural External Pressure P,

optimization

a=(l+¢) a, a=(1+ga,

| -

by CG method

L '

Convergence check Molecular Dynamics
| using {F}{c}

{R}{&} update

{R}{¢} update

Wave Functions {¥} {Kohn-Sham eq.

Optimized {¥} {R} {<}

Molecular
dynamics

35



Nose-Hoover method (Introduction)

For constant temperature calculations, we want
to reproduce the canonical distribution.

O

/N

O
\

Microcanonical ensemble
(E=const. N=const.)

O

~.

Contac

hl

t with

Canonical ensemble
(T=const. N=const.)

artificial heat-bath



The equation for continuity

Let v(r, t) be a velocity at space-time coordinates r, t. Consider a density (or
a distribution function) f(r,t) of particles.

® /Vb fdV : amass in a volume V.

» /OVo fv-dS : amass flow out of the volume V.

° _Q /V fdV : areduction ratio of the mass.

We equate the reduction ratio and the mass flow and obtain

:
o FAV = =y fv - dS = — f div(f)dV.

Thus,

o
o [

Since this equation should hold in any volume V{), we have

of
ot

+ le(fV)] dV = 0.

+ div(fv) = 0.



Classical dynamics

Consider a classical system with N particles. They are described by the

Hamiltonian Hy(q, p) which is a function of coordinates q = (q, - - -, qn) and
momenta p = (P1,- -+, PN)-

We assume that,

p?
Hy = —+Vi(q).
0= -+ V(a

where the mass of the i-th particle is m; and V' (q) is a scalar potential.

The canonical equations of motion are
dq; 0Hy pi

dt (9p1; - mi’
dpg; 8H0 B oV

dt Cdq; Oq

where t i1s the time.

We obtain the Newton equations as

m‘quj, - dpgj B _(9V _ .
“dt2 At Oq "




Liouville’s equation

Consider a phase space of space coordinates q; and momenta p; of IV particles
specified by ¢ (i = 1,---, N).

Consider the distribution function f(q;, pi,t) of the particles. We have a
continuity equation,

of :
— + i i) — 0
5 T2 |5 (f qi) + pi(f p >]
This is the Liouville’s equatlon.
If the system is stationary, — = 0, then we have

ot
o .
2 B (fai) +

)

o ..
8p7;<fpi) =0

We can rewrite the equation into

(9f+ of
q78q7 p78p7

Z

] P> {aq? ap,] 0.

(9(17 api



The Liouville theorem

If the system follows the equation of motion given by the Hamiltonian H(, we
have

oq,  0*Hy Op;

dq; 0qi0p;  Op;
Note that the total derivative is given as
d 0 iy 0 0
@~ ot T %aq T Piop,

Then for the stationary system, we have

ARSI

dt Zz: Vg 3pZ

This is the Liouville theorem.




Nose-Hoover dynamics

In Nosé-Hoover dynamics, an extra variable 7 is introduced.

The set of dynamical equations are

. Pi
q, = —,
my;
. oV(q D
Pi = — ()—Pi—n7
0q; Q
. Np?
v TNy
. Dy
===
Q

where () is a constant to control temperature fluctuation.



Canonical ensemble simulated by Nosé-
Hoover dynamics

Consider a distribution function f(q, p,n,p,) in an extended phase space.

1 (N p? p;

If fis given by Nosé-Hoover dynamics and if the dynamics is ergodic, then f
satisfies

f(q7 P, 1, p”]) =C CXpP |—

a  of af f] { of f]
it aﬁz{ ‘o Piaps T Tan TPy,
0q 8p] {877 8p,7]
+f% + 1
/ L‘M Opi ! on  Opy
= 0.

Thus, f is the static probability distribution generated by the dynamics.

The proof is necessary but not sufficient for a general system.



Nose-Hoover chain method

The Nosé-Hoover chain method is expressed by the next set of equations.

N %
q = —,
my;
Z aqz Ql
Py = ?E _ 3NET — pmgn
p; p
L LT — o, 77j—|—17
T Q) Qi
p77j
n —
J Qj

Heat-bath is represented by a chain of variables n.



Parrinello-Rahman method
(Introduction)

To determine lattice structure automatically, or to
simulate structural transformation, we want to simulate
a system with a variable unit cell.

b Compression b’,

ri:aia'l'nib'l'gc ﬁ ri,=§ia,+nib’+CiC’

Low pressure High pressure




Definitions

Let us define lattice vectors {a, b, ¢} and a 3 x 3 matrix h = (a, b, c). The
volume of the unit cell is

V=|lhl|=a-(bxc)

The position r; of a particle ¢ is written in terms of A and a column vector

S; = (57:,771:7 C}:) as X
T — ]’LSi = &;a -+ mb -+ QC

Variables &;, n;, ; are called internal coordinates and satisty 0 < &;,7m;, (; < 1.
Square of the distance between ¢ and 7 is given by

7“,,;2]- = (si — Sj)G(Svﬁ - Sj),

where G =' hh is the metric tensor.
We note also that V' = 6'h where ¢ = {b x ¢,c X a,a x c}.



Parrinello-Rahman Lagrangian

Parrinello and Rahman introduced a Lagrangian
1 A 1 i B
L=3 S misiGsi — X Ulry) + 5Wtr% — pV.
[ 71>

Here U is inter-particle potential and W is a constant determining motion of
the cell and p is the pressure.

Using the Euler-Lagrange equation, we obtain equations of motion. To derive
the equations, we introduce some quantities and an equation.

_ 1 — I .z
= ¢ h Via = hoz,ﬂs'i,/fa
) 1 U(ri;)
Taf = [ 2MiViaVig — 2 Ligals ) -
Vi J>i Tij
Mo, 30 By
!/
A N . | U(ri;) 7 —
= Zj:miha,dsi,dhﬁ,usi,u hﬁ;n/ — E_ — Tij,alij,g h[m
: >7 Ty
/
U(ri;)

= %:miha,ds'i,dsi,ﬂ/ — 2 Tija(Si — Sj)y-

1> 7”7;]'



Equations of motion for CPMD

Equations for s;:

dony o,
dt 8SZ 8Si ’
yields ,
S; = — X m;lU(ri‘j) (Si — Sj) — G_lGSz
J=t Tij
Equations for h:
d (OL\ 0L
1-%-
yields )
Wh=(6—p)é,

where ¢ is the internal stress tensor.

This set of equations allows us to perform the molecular dynamics
at a constant pressure.



The equations of motion for CP-FPMD

Here, we introduce the reference coordinates q; for the position of atoms and
let Ry(t) = (1 + e)qy(t).

The Lagrangian proposed by Wentzcovitch is utilized. The equations of mo-
tion are given by the followings.

1, 1 .
L = 2omiaiddr — E({ar}(t), &) + ;W k(') — PeaiQcen,

1 :
q=—14+¢e)'F;—dtdqy,
my
chll t 1
= II—P..)(1+ ,
W o f)aE
1= S mpvivy — tot
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Graphite-diamond transformation in a FPMD
simulation

At ambient pressure At high pressure




Formation of new bondings at the transformation

&' * White objects are carbon
atoms and yellow Iso-
surfaces represent charge
density of electrons.

 We see new bonding
represented by bonding
charge between graphite
layers.

'+ Sliding of layers

occurs due to formation

of sp3 bond connections.
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Graphitic structure stable in 40GPa range

» G-ball has a concentric
structure made of graphitic
sheets.

» The ball does not show
any structural
transformation up to ~
40GPa.

e The conductance of the
ball becomes high at high
pressure.

TEM image of the graphite ball
by F. Kokai et al. (2001).
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Lattice constants of graphitic system in high pressure

a, c/2(A)

Pressure (GPa)

Exp: by Nakayama et al.

1. Calculation has been done
for hexagonal graphite with
AB stacking of graphene
layers.

2. Since we assume the
graphite structure in calc.,
no phase transformation

Is seen and the structure

IS meta-stable up to 60GPa.
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What Is ESopt?

Based on “opt” by ISSP, Univ. of Tokyo, we
revised the program to have Esopit.

Plane wave expansion method.
Pseudo potential (Norm-conserving P.P.)
Exchange correlation: PW91

Some merits of “opt” succeed to ESopt.

Readability of the source code

Optimization of the wavefunction by the original
CG method
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Characteristics of basis sets for DFT calculation

Plane-wave expansion method with pseudo-potentials

Since plane waves are independent of position of atoms, the result is
accurate with respect to the valence electrons.

Accuracy of the calculation is determined by the maximum energy of plane
waves.

The Kkinetic energy is diagonal in the Fourier space, while the potential
energy Is diagonal in the real space. FFT is used to connect two spaces.

The Hellmann-Feynman force and the quantum stress are easily obtained.

FLAPW (Full-potential linearlized augmented plane wave)

The wave functions in an atomic sphere are expanded in spherical waves.
Otherwise, they are written in the plane waves.

Accuracy is determined by number of spherical waves and the maximum
energy of plane waves.

Less ambiguity compared to the pseudo-potential method.
Pulay force has to be evaluated.
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